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Abstract

Local Friendliness (LF) inequalities follow from seemingly reasonable assumptions about reality: (i)
“absoluteness of observed events” (e.g., every observed event happens for all observers) and (ii) “local
agency” (e.g., free choices can be made uncorrelated with other events outside their future light cone).
Extended Wigner’s Friend Scenario (EWFS) thought experiments show that textbook quantum mechan-
ics violates these inequalities. Thus, experimental evidence of these violations would make these two
assumptions incompatible. In [Nature Physics 16, 1199 (2020)], the authors experimentally implemented
an EWFS, using a photonic qubit to play the role of each of the “friends” and measured violations of
LF. One may question whether a photonic qubit is a physical system that counts as an “observer” and
thereby question whether the experiment’s outcome is significant. Intending to measure increasingly
meaningful violations, we propose using a statistical measure called the “branch factor” to quantify the
“observerness” of the system. We then encode the EWFS as a quantum circuit such that the components
of the circuit that define the friend are quantum systems of increasing branch factor. We run this circuit
on quantum simulators and hardware devices, observing LF violations as the system sizes scale. As
errors in quantum computers reduce the significance of the violations, better quantum computers can
produce better violations. Our results extend the state of the art in proof-of-concept experimental vio-
lations from branch factor 0.0 to branch factor 16.0. This is an initial result in an experimental program
for measuring LF violations at increasingly meaningful branch factors using increasingly more powerful
quantum processors and networks. We introduce this program as a fundamental science application for
near-term and developing quantum technology.
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1 Introduction

Experimental quantum mechanics has long produced evidence that reality differs from what naive human
intuition expects. These experimental results sometimes go beyond supporting specific quantum mechanical
predictions and give evidence against whole classes of physical theories that obey certain principles. For
example, experimental violations of Bell inequalities provide evidence for quantum mechanics and show that
reality is not described by any theories (even super-quantum ones) that maintain both local agency and local
hidden variables. These results are part of experimental metaphysics [Shi89, Cav08], giving evidence about
possible physical theories at the meta level.

New tests in experimental metaphysics have been proposed to study the metaphysical property of Local
Friendliness (LF) [BUAG+20]. Local Friendliness (defined more formally in Section 2) is loosely the con-
junction of objective reality across observers and local agency. Thus, a violation of the Local Friendliness
property provides evidence that one of these two assumptions needs to be jettisoned. Local Friendliness tests
are formalizations and extensions of the Wigner’s Friend thought experiment from the 1960’s [Wig61].

In this work, we:

1. propose how quantum computers (and related quantum technology like quantum networks) can be
used to build increasingly more meaningful (larger and loophole-free) tests of Local Friendliness and

2. use small quantum computers to give experimental evidence (with loopholes) of Local Friendliness
violations as a first step in this program.

The improvement of quantum technology through academic and industrial development opens up new
avenues for studying fundamental scientific questions. We are optimistic that a program of Local Friend-
liness violations can motivate continued development and benchmarking of quantum technology by testing
important aspects of reality.

This paper proceeds as follows: first, we introduce Local Friendliness inequalities and the Extended
Wigner’s Friend Scenario experiments that can be used to violate them. We then propose our experimental
program for increasingly significant LF violations and focus on the branch factor as the measure of observer-
ness. Next, we demonstrate violations of LF (with loopholes) at the highest branch factors yet observed by
using quantum computers as an experimental platform. To do this, we introduce practical approaches to
deal with noise in our experiments, including validating branch factors under noise and reducing the impact
of measurement noise. Finally, we conclude with future directions for advancing the proposed experimental
program.

2 Local Friendliness and tests to violate it

Local Friendliness comes from the conjunction of two basic assumptions about reality [BUAG+20,HC22]. We
first introduce these assumptions as metaphysical principles and later define them in a particular experimental
setup for testing Local Friendliness violations.

Definition 1 (Absoluteness of Observed Events (AOE)). Every observed event happens for all observers.

AOE states that if an event occurs, it does not occur relative to any particular observer. This can be
viewed as a weaker condition than the intuition violated by standard relativity. Relativity tells us that two
observers may disagree on the time an event occurs, whereas dropping the assumption of AOE means there
could be a potential disagreement about whether an event occurred.

Definition 2 (Local Agency (LA)). Free choices are uncorrelated with other events outside its future light
cone.
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At a high level, LA can be interpreted to mean that one can construct independent variables. In other
words, LA says that there are events that do not influence the probabilities of other events. We will need to
be able to make these uncorrelated events in our particular experimental scenarios to show violations.1

Definition 3 (Local Friendliness (LF)). The conjunction of AOE and LA.

It turns out that thought experiments can be designed whereby textbook quantum mechanics violates the
assumption of LF. These thought experiments build upon the Wigner’s Friend thought experiment initially
proposed by Wigner in [Wig61] and later refined by Deutsch in [Deu85]. The implications of these violations
being experimentally confirmed are significant. One is forced to either:

• Drop AOE. This means that nature allows separate realities for different observers, called Wigner
bubbles by Cavalcanti [Cav21]. While we are accustomed to social and philosophical subjectivity,
introducing this subjectivity into the heart of physics is a meaningful move.

• Drop LA. This would be consistent with signaling hidden variable theories or with some form of
superdeterminism.

While different interpretations of quantum mechanics support keeping or dropping either LA or AOE, a
meaningful LF violation means one must drop one to remain consistent. Alternatively, one should propose
some rule for why one interpretation should be applied in one scenario and not others. Remaining generally
“interpretation agnostic” would no longer be tenable.

2.1 Wigner’s Friend and Extended Wigner’s Friend Scenario thought experi-
ments

The Wigner’s Friend thought experiment (Figure 1) consists of an observer, Alice, and her friend, Charlie.
We assume Charlie is in an isolated laboratory, receiving and measuring part of an entangled quantum
system. Upon measurement, the outcome obtained by Charlie is known to him but is still not known to
Alice (as she is outside of the isolated laboratory). Charlie then emerges from his laboratory to inform Alice
of the result of Charlie’s measurement. Before Alice receives this information, however, one could represent
Alice’s knowledge of the quantum system measured by Charlie as still in a superposition (even after Charlie
has measured and collapsed the quantum system). It is only after Alice receives the measurement outcome
information from Charlie that her superposition representation of the state prepared and measured by Charlie
collapses to the same measurement outcome that Charlie previously obtained. If collapse is supposed to be
an objective physical process, then this uncertainty is uncomfortable.

This original thought experiment highlights that it is unclear when the quantum system collapsed (un-
der a Copenhagen interpretation). From Charlie’s perspective, the collapse happened when he applied a
measurement to his quantum system inside the isolated laboratory and obtained his measurement outcome.
Alternatively, from Alice’s perspective, the collapse occurred when Alice obtained information from Charlie
about the measurement outcome he obtained.

Building on the original Wigner’s Friend thought experiment, work by Frauchiger and Renner [FR18]
and then by Brukner led to an extension of the thought experiment called the Extended Wigner’s Friend
Scenario (EWFS) [Bru18], illustrated in Figure 2. Extended Wigner’s Friend Scenarios comprise parallel
instances of the original Wigner’s Friend thought experiment. We now consider two observers, Alice and
Bob, and their respective friends, Charlie and Debbie. The friends are each contained in their respective
isolated laboratories and possess some quantum system they share. They each carry out a measurement and
subsequently relay these measurement outcomes to their observer counterparts.

In [BUAG+20], the authors performed an experiment with a specific instance of the EWFS and derived
specific LF inequalities that were experimentally violated. In principle, one could consider generalized
extensions of the EWFS in which there are at least two observers and a corresponding number of associated
friends. Examples of these multiparty scenarios and associated LF inequalities are studied in [HC24]. For our
purposes, and the scenario presented in [FR18] and [BUAG+20], we restrict our attention to the Extended

1Local Agency can be analyzed into separate assumptions of Interventionist Causation and a Relativistic Causal Arrow.
See [Wis14] and [WC17] for more details.
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Figure 1: Conceptual rendering of the Wigner’s Friend scenario. A system is sent into Charlie’s sealed lab.
Alice has different measurement settings labeled by x to observe the sealed lab that contains her friend
Charlie and his measurement outcome c. Alice’s measurement outcome has the value labeled a. Figure
replicated and modified with permission from the authors from [BUAG+20].

Wigner’s Friend Scenarios of two parties. We note that, for explanatory purposes, our description makes
references to quantum theory, but that the Local Friendliness inequalities are theory-independent.

For the two-party EWFS, the friends Charlie and Debbie share a (not necessarily entangled) quantum
system, where SC is the part of the system in possession of Charlie and SD is the system in possession of
Debbie. Charlie and Debbie are each in isolated labs where they perform a measurement in some specified
basis on their respective part of the system and record the outcome in, say, their memory. Define FC as
Charlie’s laboratory excluding the system SC and similarly FD for Debbie. Charlie’s measurement of SC (in
some specified basis) is, according to the observer Alice, a unitary that acts on HFC

⊗HSC
where HX is the

Hilbert space associated to system X, similarly, for Bob and his friend Debbie.
From Alice and Bob’s perspective, there are two ways to measure the quantum system. They can

open the lab and simply “peek” at the classical measurement outcome recorded by their friend in the lab.
Alternatively, they can measure the quantum system themselves by reversing the measurement process that
the friends performed and then directly measuring the quantum system in a basis of their choosing. They
can do this because the friend’s measurement process is unitary, and we assume that Alice and Bob can
manipulate the isolated labs in any way that quantum theory allows. Interestingly, it can be shown that
no-signaling implies that the friends (Charlie and Debbie) are not only not aware of what outcome they had
before being reversed, but also that they cannot be aware of having been reversed [BB23].

Unfortunately, performing this experiment with macroscopic observers as friends is beyond what we could
imagine engineering. Instead, we model each friend (Charlie and Debbie) as a system of qubits. We model
measurements performed by the friends as a CNOT gate. For example, if Charlie measures SC , we apply a
CNOT controlled from SC to the qubit(s) modeling Charlie. From Alice’s perspective, the measurement is a
unitary operation that she can reverse. In the following section, we illustrate how this produces a violation
of Local Friendliness.

2.2 Quantum mechanical violations of LF in the three-setting two-party EWFS

In this section, we consider the specific details of the two-party and three-setting EWFS experimentally
carried out in [BUAG+20]. A conceptual diagram is given in Figure 2. Following the EWFS described
in [BUAG+20], we consider two observers, Alice and Bob, who have the option of choosing amongst three
possible measurement settings labeled as x, y ∈ {1, 2, 3} where x is Alice’s setting and y is Bob’s setting.
Alice and Bob have respective friends, Charlie and Debbie, who share some bipartite quantum system and
must measure their share of the system in a basis that depends on the x and y settings, respectively.

If Alice chooses x = 1, she peeks and measures Charlie directly (in the computational basis). If Alice

4



Figure 2: Conceptual rendering of an Extended Wigner’s Friend Scenario (EWFS). A system is split and
sent into two sealed labs. Alice has different measurement settings labeled by x to observe the sealed lab
that contains her friend Charlie and his measurement outcome c. Similarly, Bob has measurement settings
labeled by y for the sealed lab containing Debbie and her measurement outcome d. Alice’s measurement
outcome has the value labeled a, and Bob’s has the value labeled b. Figure replicated with permission from
the authors from [BUAG+20].

selects x = 2 or x = 3, she reverses the measurement operation performed by Charlie and measures the
system in a basis that depends on x. The same procedure holds for Bob and his friend Debbie, but possibly
with different basis measurements. To clarify the measurement setting labels, we will use the convention
that x = 1 or y = 1 is the PEEK setting and x ∈ {2, 3} or y ∈ {2, 3} are the REVERSE-1 and REVERSE-2
settings respectively.

We can implement the EWFS in a quantum circuit (an example is shown in Figure 6). We are interested
in the expectation values of observables on the subsets of qubits of these quantum circuits that represent
the outcomes for Alice and Bob. We implement the EWFS in a quantum circuit where we can only do
measurements in the computational basis. So, implementing a measurement in a rotated basis is achieved
by simply applying some rotation gates before measuring in the computational basis. Hence, the chosen
settings x and y determine what circuit to run.

LF inequalities bound what observed outcome statistics are possible for Alice and Bob when LF holds [BUAG+20].
For measurement settings x, y ∈ {1, 2, 3} = {PEEK, REVERSE-1, REVERSE-2}, we denote Ax and By as
the corresponding observables for Alice and Bob. For completeness, the inequalities considered in [BUAG+20]
are reproduced in Equations (1), (2), (3), (4), and (5)2.

Quantum mechanics indicates that it should, in principle, be possible to violate these LF inequalities.

2Before being derived in [BUAG+20], these inequalities were obtained under a different context regarding device-independent
settings [Col09,PAM+10,AM16] in this thesis [Woo14] (Appendix-A) under the name of “partially deterministic polytopes”.
Situated between the local and no-signaling polytopes, these partially deterministic polytopes define the boundaries of behaviors
for which randomness certification is impossible against a no-signaling adversary, given a specific set of measurements. They
serve as a bridge, connecting the extremes of local and no-signaling constraints in the landscape of quantum behaviors. This
connection was also pointed out in [BUAG+20] and has been subsequently investigated in [HC24].
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In [BUAG+20], the authors considered a specific bipartite state and sets of measurements for Alice and Bob
that violated each of the LF inequalities we reproduce here.

1. Genuine LF inequality:

−⟨A1⟩ − ⟨A2⟩ − ⟨B1⟩ − ⟨B2⟩ − ⟨A1B1⟩ − 2⟨A1B2⟩
−2⟨A2B1⟩ + 2⟨A2B2⟩ − ⟨A2B3⟩ − ⟨A3B2⟩ − ⟨A3B3⟩ − 6 ≤ 0.

(1)

2. Bell I3322 inequality:

−⟨A1⟩ + ⟨A2⟩ + ⟨B1⟩ − ⟨B2⟩ + ⟨A1B1⟩ − ⟨A1B2⟩ − ⟨A1B3⟩
−⟨A2B1⟩ + ⟨A2B2⟩ − ⟨A2B3⟩ − ⟨A3B1⟩ − ⟨A3B2⟩ − 4 ≤ 0.

(2)

3. Brukner inequality:
⟨A1B1⟩ − ⟨A1B3⟩ − ⟨A2B1⟩ − ⟨A2B3⟩ − 2 ≤ 0. (3)

4. Semi-Brukner inequality:

−⟨A1B2⟩ + ⟨A1B3⟩ − ⟨A3B2⟩ − ⟨A3B3⟩ − 2 ≤ 0. (4)

5. Bell non-LF inequality:

⟨A2B2⟩ − ⟨A2B3⟩ − ⟨A3B2⟩ − ⟨A3B3⟩ − 2 ≤ 0. (5)

We reproduce the specific strategy in [BUAG+20] that violates these inequalities. Let |ψ⟩ ∈ HSC
⊗HSD

be the entangled quantum state held by Charlie and Debbie defined as

1√
2

(|01⟩ − |10⟩) ∈ HSC
⊗HSD

. (6)

Additionally, define the projectors Π±
θ = |ϕ±θ ⟩⟨ϕ

±
θ | parameterized by an angle θ ∈ [0, 2π] where∣∣ϕ±θ 〉 =

1√
2

(
|0⟩ ± eiθ |1⟩

)
. (7)

Define the observable
Oθ = Π+

θ − Π−
θ , (8)

as well as a function

θz =


168◦ if z = 1,

0◦ if z = 2,

118◦ if z = 3.

(9)

These angles determine the observables for Alice, while for Bob, they are determined by θ′z = β − θz where
β = 220◦. For such a state and sets of measurements, the LF inequalities are violated and attain left-hand
side values as provided in the middle column of Table 1. Later, in Section 4, we derive another set of angles
and parameter β that can achieve theoretically maximal values for violations. These are shown in the right
column of Table 1.

3 Experimental Program for Local Friendliness Violations with
Significant Friend-Observers

The inequality violations described in Section 2 are only significant if the friends in the EWFS count as
observers. In a sense, their status as observers makes the measurement outcome they observe real. While
[BUAG+20] showed violations with a single photonic qubit as each friend, one may reasonably doubt that
photonic qubits are observers and, therefore, doubt that the experiment is significant. While running these
experiments with a human as the observing friend would produce the least controversial outcome, we don’t
know how to do this with current technology. Instead, one can design an experimental program to build up
to this scale (Figure 3).
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Inequality
LHS of inequality

w/ [BUAG+20] setup
LHS of inequality

w/ our optimal angles (Sec. 4)
Genuine LF 0.59116 1.27884
Bell I3322 0.299348 1.0
Brukner 0.124336 0.82843

Semi-Brukner 0.380364 0.82843
Bell non-LF 0.57028 0.82843

Table 1: Middle Column: The theoretical results from [BUAG+20] for the left-hand sides of the inequalities
when the quantum state shared by Charlie and Debbie is from Equation (6) and where the measurements
performed by Alice and Bob are defined by Equation (8). Right Column: The theoretical maximum for the
left-hand sides of the inequalities when we choose optimal angles as described in Sec. 4. We numerically
derived the maximum for the Genuine LF and Bell I3322 inequalities.

photonic qubit friend human friend

more “observer-like”

LF violations scale:

this work Human-level AI on a QPU

Figure 3: A program designed to test Local Friendliness violations on a progressively larger scale increases
the significance of the observers used as friends. Our work gives the first experimental violations of Local
Friendliness with friends larger than a photonic qubit. In [WCR23], the authors estimate the size of a QPU
needed to perform experiments using a human-level artificial intelligence simulated on a QPU as the friend
observer at approximately 1019 logical qubits and logical depth of 1014 operations. We mark this as a white
dot as it is a theoretical target while our work gives experimental resuts (black dot).

3.1 Quantifying Observerness

To establish an experimental program for more “observer-like” friends one needs to choose a physical property
of a friend which “gets closer in scale to a system that is unambiguously an observer.” Since there is no
clear consensus on a single dimension that defines an observer, there are several dimensions that could be
considered:

• More mass [FGZ+19,DRD+20].

• More complexity [Gri10,Mül20].

• More objectivity [CGPR+21] (e.g. redundancy and consensus via Quantum Darwinism [Zur09]).

• Higher degree of irreversibility [MEJ19,JKMJB21,SBHL23].

• More conscious [Wig61,Shi63,Sta99,HP14,NRK+24].

• More agency [DTB16,NRR21].

• More life, according to a definition like the assembly index [SCL+23].

• More thoughtful (using a quantum computer running a reversible simulation of a human mind) [WCR23].

• Higher branch factor [TM23] (the focus of this work: Section 3.2).

Fundamentally, these dimensions emerge because today there is only one kind of intuitively unambiguous
observer: a human that is heavy, complex, is objectively described, whose operation appears highly irre-
versible, is conscious, is alive, has thoughts and possesses agency. Observers are special and not equivalent
to other quantum systems [Bru21]. In short, different perceptual states are always macroscopically distin-
guishable and likely to have a high branch factor. This means that to violate LF one needs to scale EWFSs
to include observers beyond toy systems. Still, it would be surprising if one must get to an actual human
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to possess an observer. As John Bell inquired, “Was the wave function waiting to jump for thousands of
millions of years until a single-celled living creature appeared? Or did it have to wait a little longer for some
highly qualified measurer—with a PhD?” [BIPS01].

Of the options, this work focuses on the branch factor as it is a quantifiable measure that can be applied
to different systems that can be prepared readily on available quantum computers. We also note previous
work [CGPR+21] that used quantum computers to simulate the emergence of objectivity as indicative of
another direction that is compatible with quantum computers as an experimental platform.

Mass is also a compelling example of the other proposed dimensions, with several research groups working
on establishing progressively larger superpositions. These are worth investigating but will require custom
experimental setups, e.g., the proposed Macroscopic Quantum Resonators MAQRO experiments that aim
to test gravitational decoherence [KAA+22]. While the branch factor has the advantage that it can be run
on today’s quantum computers, using a universal quantum computer is overkill as one needs only to run one
program: unitary measurement and its reverse. In the future, specifically designed EWFS setups can likely
be designed to maximize the branch factor.

3.2 Branch factor as a measure of observerness

In the EWFS, a quantum system in (up to normalization) a superposition of states |ψ⟩0 + |ψ⟩1 interacts with
a friend in state |F ⟩init resulting in the combined state |ψ⟩0 |F ⟩0 + |ψ⟩1 |F ⟩1. The pointer states |F ⟩0 and
|F ⟩1 are the states of the friend after having measured the system state. For our experimental program, we
need a measure on these pointer states that describes how well they are acting as classical observer states.
We propose using the branch factor, as described in [TM23], to quantify the this “observerness”.

The idea is that pointer states (also called branch states) are classical when they are (i) easy to distinguish
by measurements, and are (ii) hard to interfere. Interfering the branch states would operationally distinguish
between there having been a classical mixture of states instead of an underlying superposition. This gives an
operational definition for when a state has decohered. As we review in the definitions below, a high branch
factor means that operationally determining whether the friend is in a superposition of the two states or in
a classical mixture of the two states would be hard.

To define the branch factor, we first consider two complexity metrics on interference and distinguishability
as defined in [AAS20]. Let C(U) be the circuit complexity of some unitary, i.e., the minimum number of one-
and two-qubit unitaries required to perform U . Here, single-qubit unitaries have weight one and two-qubit
unitaries weight two. Let |ψ0⟩ and |ψ1⟩ be two orthogonal quantum states.

Definition 4 (Interference complexity proxy). Let 0 ≤ δ ≤ 1. The interference complexity CI(|ψ0⟩ , |ψ1⟩ , δ)
is equal to minU (C(U)) such that

|⟨ψ1|U |ψ0⟩ + ⟨ψ0|U |ψ1⟩|
2

≥ δ. (10)

Definition 5 (Distinguishability complexity proxy). Let 0 ≤ δ ≤ 1. The distinguishability complexity
CD(|ψ0⟩ , |ψ1⟩ , δ) is equal to minU (C(U)) such that

|⟨ψ0|U |ψ0⟩ − ⟨ψ1|U |ψ1⟩|
2

≥ δ. (11)

It was shown in [AAS20] that these proxy metrics are within a constant factor O(1) of the true interference
and distinguishability complexities.

Definition 6 (Branch factor). Let 0 ≤ δ ≤ 1. The branch factor 3 between states |ψ0⟩ and |ψ1⟩ is defined as

B(|ψ0⟩ , |ψ1⟩ , δ) := CI(|ψ0⟩ , |ψ1⟩ , δ) − CD(|ψ0⟩ , |ψ1⟩ , δ). (12)

We consider a branch factor “good” when the interference complexity is significantly greater than the
distinguishability complexity, i.e. CI(|ψ0⟩ , |ψ1⟩ , δ) ≫ CD(|ψ0⟩ , |ψ1⟩ , δ) for some choice of |ψ0⟩, |ψ1⟩, and δ.
Some examples of states with good branch factors, as discussed in [TM23], are

3This is called “branchiness” in [TM23].
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• GHZ state: Let n ≥ 1 be a positive integer and let |ψ0⟩ = |0n⟩ and |ψ1⟩ = |1n⟩. Then, for δ = 1, we
can exactly compute the interference and distinguishability complexity. For interference, we can use
two-qubit gates X ⊗X to flip the bits two at a time to swap |0n⟩ with |1n⟩. If n is even, we need n/2
two-qubit gates, while in the case that n is odd, we need (n−1)/2 two-qubit gates and one single-qubit
gate. So, the interference complexity is n regardless of the parity of n. For the distinguishability
complexity, we need a circuit that maps |0n⟩ to itself, but |1n⟩ to − |1n⟩. We can do this by applying
one Z-gate on the first qubit. So

CI = n, CD = 1, and B = n− 1. (13)

• Product state and Haar random state: for n-qubit states, let |ψ0⟩ = |0n⟩ and |ψ1⟩ = |υ⟩, where |υ⟩ is
a Haar random state. Then for δ = 1 [Kni95]

CI ≥ 4n/9 − n/3 − 1/9, CD ≤ n, and B ≥ 4n/9 − 4n/3 − 1/9, (14)

with high probability (probability of measuring 0n in a Haar random quantum state is O(exp(−n))).

• Two random states n-qubit states produced by circuits with depth D0 and D1 respectively. It can be
shown [TM23] that

CI = O((D0 +D1)n) and CD = O(min(D0, D1)n) (15)

• Product state and Dicke state: for n-qubit states, let |ψ0⟩ = |0n⟩ and |ψ1⟩ = D(n, n/2) where D(n, k)
is a Dicke state: an equal superposition over all bitstrings of size n that have Hamming weight k.
Then, for δ = 1, assuming the asymptotic upper bound of the circuit complexity in [BE19] is also a
lower bound

CI ≥ Ω(n2), CD = O(1), and B = Ω(n2). (16)

The distinguishability complexity is O(1) with high probability: measuring a random qubit gives us a
1 with probability ∼ 1/2, so measuring a constant number of qubits one can get a success probability
as high as one wants.

Examples of “bad” branch factors are those that have the reverse relationship, where the distinguishability
complexity is significantly greater than the interference complexity, i.e., CD(|ψ0⟩ , |ψ1⟩ , δ) ≫ CI(|ψ0⟩ , |ψ1⟩ , δ)
for some choice of |ψ0⟩, |ψ1⟩, and δ. As considered in [TM23], error-correcting codes have bad branch
factors. Making it hard for the environment to get information from your quantum system (i.e., high
distinguishability) makes it less likely for your system to decohere.

Section 4 describes experiments where GHZ states are used to increase branch size. GHZ state friends
also increase the friend’s particle number and size of Hilbert space, which are other interesting candidates
for observerness. Connecting the branch factor metric of observerness to other proposals (Sec. 3.1) is an
open avenue for future work.

By running the EWFS with friends with progressively larger branch factors, we test LF violations for
increasingly meaningful classes of observers. What could the outcomes of such a program be?

1. We could observe violations up to systems with the same branch factors as humans or even with
humans as friends. Each result at each scale would provide more evidence that LF is indeed violated
by reality.

2. We could observe some threshold branch factor where the LF violations stop. One could interpret this
as some “collapse model” where friends above that threshold count as observers. Thus, one could argue
that LF is not violated by reality. Notably, this would require some extension to textbook quantum
mechanics and provide experimental evidence for a specific definition of an observer.

Of course, pursuing this program involves significant engineering challenges in reliably preparing increas-
ing branch factors. Importantly, it also requires us to consider how to handle experiments where branch
factors are produced under noisy experimental conditions. We say more about handling these noisy condi-
tions in Section 4.1 and Section 4.2.
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4 Experimental Local Friendliness violations on quantum com-
puters

In this section, we empirically demonstrate LF inequality violations using Extended Wigner’s Friend Scenar-
ios for increasing branch factors of the friend system using (i) a noiseless quantum processor simulator, (ii)
a simulator with noise models, (iii) and real quantum hardware devices. We do this in simulation for three
“types” of friends: the friend system is 1) a GHZ state, 2) a controlled-random unitary, and 3) a controlled
Dicke state. However, we only measure violations experimentally on GHZ state friends due to hardware
limitations. To experimentally demonstrate these violations, we use approaches to validate branch factors
produced under noise and error migration approaches to deal with measurement noise.

While one can consider scenarios where all local friendliness inequalities are violated, a violation for any
one of the Equations (1), (2), (3), or (4) is sufficient to illustrate that local friendliness has been violated. We,
therefore, focus on violating the semi-Brukner inequality from Equation (4) in the following sections. Part
of the reason for focusing on this inequality is its relative simplicity. Specifically, notice that Equation (4)
lacks a B1 observable, eliminating the need to consider a PEEK setting for Bob. This simplification allows
us to simplify Bob’s friend (Debbie) to just a single qubit, as removing PEEK eliminates the need for Bob to
look at Debbie’s qubit register.4 Removing this setting configuration from our circuit allows us to reduce the
size of our circuit by approximately a factor of two. This enables us to scale the circuit and consider larger
friend sizes on simulators and hardware devices that would have otherwise been more difficult to obtain.

To compute the expectation values for the semi-Brukner inequality, we have to infer what branch the
friends are in using a single measurement. Since the friend system has low distinguishability complexity for
the systems we consider, this is possible with high probability. The following subsections describe how we
do this for the GHZ and controlled-random unitary friend systems and plot the empirically obtained LF
inequality violations.

The general form of the EWFS circuit is shown in Figure 4. Alice and Bob’s measurement settings (e.g.,
PEEK, REVERSE-1, or REVERSE-2 as defined in Section 2.2) cause the controlled operations to be labeled
as ALICE SETTING and BOB SETTING. The specific gates in these controlled operations depend on what
type of friend is instantiated. Using a CNOT ladder, as in Figure 5, causes the friend system to be in a GHZ
state for which we know the branch factor increases linearly in the friend’s size, c.f. Equation (13). If we
use a controlled-random unitary, the branch factor will increase exponentially in the friend system size, c.f.
Equation (14). However, we need several gates that grow exponentially in system size to implement such a
random unitary.

Figure 4: Circuit depiction of the extended Wigner’s Friend scenario. Alice and Bob begin by
preparing a bipartite state as defined in Equation (6). Alice then performs her measurement setting on
Charlie’s qubit(s); likewise, Bob performs his measurement on Debbie’s (single) qubit. The settings per-
formed by Alice and Bob are either PEEK, REVERSE-1, or REVERSE-2. Finally, the system qubits of
Charlie and Debbie are measured.

4We thank Eric Cavalcanti, Howard Wiseman, and Nora Tischler for pointing this out to us.
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|0⟩n

Figure 5: CNOT ladder for GHZ friends in EWFS. An n-qubit CNOT ladder used by Charlie.

The angles in Equation (9) were chosen in [BUAG+20] to obtain violations for the Bell non-LF inequalities
while not violating LF inequalities, showing that the LF inequalities are weaker than inequalities based on
Local Hidden Variable assumptions. For our purposes, we instead want to know which angles can provide
the maximal violation of these inequalities to obtain violations for friend sizes as high as possible. Using the
circuit description of the EWFS scenario, one can quickly compute that ⟨Ai⟩ = ⟨Bi⟩ = 0 for all i = 1, 2, 3
and that ⟨AiBj⟩ = − cos(βj − θi). This allows us to find the optimal angles for maximal violation of the LF
inequalities.

1. Genuine LF inequality:

cos(β1 − θ1) + 2 cos(β2 − θ1) + 2 cos(β1 − θ2) − 2 cos(β2 − θ2)

+ cos(β3 − θ2) + cos(β2 − θ3) + cos(β3 − θ3) − 6

≤ 0.

(17)

2. Bell I3322 inequality:

− cos(β1 − θ1) + cos(β2 − θ1) + cos(β3 − θ1) + cos(β1 − θ2) − cos(β2 − θ2)

+ cos(β3 − θ2) + cos(β1 − θ3) + cos(β2 − θ3) − 4

≤ 0.

(18)

3. Brukner inequality:

− cos(β1 − θ1) + cos(β3 − θ1) + cos(β1 − θ2) + cos(β3 − θ2) − 2 ≤ 0. (19)

4. Semi-Brukner inequality:

cos(β2 − θ1) − cos(β3 − θ1) + cos(β2 − θ3) + cos(β3 − θ3) − 2 ≤ 0. (20)

5. Bell non-LF inequality:

− cos(β2 − θ2) + cos(β3 − θ2) + cos(β2 − θ3) + cos(β3 − θ3) − 2 ≤ 0. (21)

We give the maximum inequality violations under optimal choices of angles in the right column of Table 1.

4.1 Noisy Friends: preparing branch factors under noise

In this work, our EWFS are prepared on quantum computers, which have errors in their operation. Even if
one is not using a quantum computer, any experimental setup will have noise in the prepared friend states.
Thus, we need a model for dealing with LF violations where we could have errors in the branch factors of
the prepared friend states.

One approach is to characterize a fidelity bound on the state of Charlie in the middle of the scenario. For
example, say we aim for Charlie to be in the friend state |ψ⟩ := 1√

2
|ψ0⟩+ |ψ1⟩ after they have measured their
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system. Errors in that preparation mean that Charlie is instead in a state represented by density matrix ρ.
Then the fidelity F(|ψ⟩ , ρ) = ⟨ψ| ρ |ψ⟩ gives a lower bound q on the probability that the state |ψ⟩ has been
prepared with our target branch factor.

Our experiments must show that we have prepared the intended branch factor and violated local friendli-
ness with those same states. We need to avoid a scenario where the incorrect states dominate the expectation
values and contribute to the local friendliness violation. Consider a proposed experimental violation of the
semi-Brukner inequality.

X := −⟨A1B2⟩ + ⟨A1B3⟩ − ⟨A3B2⟩ − ⟨A3B3⟩ ≥ 2 (22)

When X ≥ 2, we have a LF violation. To bound the value of X as a function of the probability q that
the data going into the expectation is valid, we need to consider the worst-case scenario for the expectation
values given the bounds and the probability 1 − q of invalid data. Each random variable Ai and Bj is
bounded between -1 and 1. If there is a probability q that the data is invalid, the invalid data might skew
the expectation values. For invalid data, we assume the worst-case scenario where the invalid data maximizes
or minimizes each term in X. The effective expectation value can be modeled as a mixture

⟨AiBj⟩ = q⟨AiBj⟩valid + (1 − q)⟨AiBj⟩invalid (23)

Similarly, for the other expectation values. Let ⟨ ˜AiBj⟩ be the measured expectation value. This means that

⟨AiBj⟩valid =
⟨ ˜AiBj⟩ − (1 − q)⟨AiBj⟩invalid

q
(24)

We then set ⟨AiBj⟩invalid to whatever is the worst case for that term in X. For the positive term ⟨A1B3⟩ we
have

⟨A1B3⟩valid ≥ ⟨ ˜A1B3⟩ − 2(1 − q)

q
(25)

For the negative terms, we have

−⟨AiBj⟩valid ≥ 2(q − 1) − ⟨ ˜AiBj⟩
q

(26)

and similarly for the other terms. This gives

Xvalid := −⟨A1B2⟩valid + ⟨A1B3⟩valid − ⟨A3B2⟩valid − ⟨A3B3⟩valid (27)

Xvalid ≥ 1

q

[
X̃ + 8(q − 1)

]
(28)

This value of Xvalid is what matters to show the violation under noise. We must have Xvalid ≥ 2 or
similarly, the measured value

X̃ ≥ 8 − 6q. (29)

The maximum value for X̃ in the Semi-Brukner inequality is 2.82843 (See Table 1). Solving for the minimum
fidelity that supports this gives 93.66%. Thus, we don’t need perfect friend state preparation to see violations.
If our friend state is prepared with greater than 93.66%, then we can be confident that our LF violations
hold at our target branch factor.

Now, we consider how to characterize q from a real experiment. One approach is to do state tomography
and measure it directly. Unfortunately, this becomes experimentally difficult for larger friend sizes. Instead,
we propose extrapolating from a depolarizing model for the quantum circuit.

Depolarizing Case: Assume a depolarizing noise model where we apply the depolarizing channel after
each single-qubit gate in the circuit with parameter p1 and with parameter p2 after each two-qubit gate, i.e.,
E(ρ) = (1−pi)ρ+piI/2

n for n-qubit quantum state ρ. Then it is straightforward to check that if our circuit
with n single-qubit gates and m two-qubit gates are supposed to prepare the quantum state ρ = |ψ⟩ ⟨ψ|,
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the noisy density matrix will be ρ′ = (1 − p1)n(1 − p2)mρ+ (1 − (1 − p1)n(1 − p2)m)I/2n. Since the above
observables are zero when evaluated at the maximally mixed state, then by linearity of the expectation value,
the expected values of the observables for the noisy density matrix ρ′ will be equal to the ideal one multiplied
by (1 − p1)n(1 − p2)m. Thus, we’d need X̃ ≥ 2/[(1 − p1)n(1 − p2)m] to show a violation. Again, using the
max value of 2.82843 for X̃, we see that the minimum single-qubit and two-qubit fidelities should satisfy
(1 − p1)n(1 − p2)m ≥ 2/2.82843 ≈ 0.707. Usually, the two-qubit gate fidelity 1 − p2 is much lower than the
single-qubit gate fidelity, and the preparation of the friend size mostly dominates the number of two-qubit
gates. Linearly increasing friend size increases the two-qubit gates linearly, assuming a chain-like layout for
the friend system. For 10 layers, assuming p1 = p2/10 and n = 10m (single-qubit gates being an order of
magnitude higher fidelity and friend system preparation requiring an order of magnitude more single-qubit
gates), this would need a two-qubit gate error rate of at most ∼ 1.7%. This is not an infeasible error rate for
near-term quantum computers, but to get to 100 layers, that error rate also drops by an order of magnitude.
If depolarizing noise is a good error model, each order of magnitude decrease in error rate should allow one
to push to another order of magnitude in friend size and branch factor. Fault-tolerant quantum computers
will be critical here.

4.1.1 Other approaches to validate branch factors

The approach described above bootstraps up to estimated fidelities from characterizing modular components.
One might prefer a systematic witness for branch factor that doesn’t require such extrapolation.

Consider the case where friend states are given by two Haar random states whose interference and
distinguishability complexities are then given by (15). We know there is a signature for random quantum
states given by heavy output distributions whose statistics can act as a proxy for having prepared random
quantum states [AAB+19]. This would give a protocol for validated EWFS experiments where one randomly
interleaves the true experiment, gathering Alice and Bob’s statistics, or validations where computational basis
measurement statistics are taken on Charlie’s and/or Debbie’s qubits. The measurements from the validation
runs can be verified using cross-entropy benchmarking following [AAB+19].

A downside of this direction is that this verification is computationally intensive, requiring classical
simulation of the circuits to do the cross-entropy benchmarking. Thus, this approach is likely limited to
≤ 100 qubits. Instead, a validation-based collision counting of random quantum states would not require
much classical computing but does require a large amount of sampling [Mar23]. Another alternative is to
consider “peaked” random circuits proposed for efficient validation [AZ24]. However, more work needs to be
done to study the preparation and branch factors of super-positions of these states.5

More broadly, we would prefer classically efficient verifications that the quantum states of sufficient
branch factor have been produced. In [RUV13], the authors introduce a protocol for classically verifying a
quantum system’s dynamics using CHSH tests. More examples of “self-testing” to verify the production of
specific quantum states are given in this survey [ŠB20]. For example, in [CGKM21] a protocol is given to
use single-mode Gaussian measurements to verify a class of continuous variable quantum states, including
Boson Sampling states. This class of states could be used to design friends who have high branch factors
but also efficient state verification. We leave it to future work to directly link the self-testing literature to
validating branch factors, but note that this direction looks promising for scaling up validations.

4.2 Noisy Measurements: inferring branches using majority vote

After measurement, there are many ways to infer the friend’s branch in the PEEK setting. A simple way
would be to randomly pick a qubit from the friend system and measure it. In the noiseless case, this would
work perfectly to determine the branch of the GHZ state. An example circuit of EWFS using this approach
is in Figure 6. However, this will not work well in the presence of measurement noise since bits might get
flipped by measurement errors. A better approach would be to measure multiple qubits and decide which
branch you have measured based on a majority vote. Figure 7 shows an example where we measure all the
qubits of the friend system in the PEEK setting. The observables we are interested in assign a value of 1 to
one branch and a value of −1 to the other.

5We thank Andrea Mari for pointing out these recent works on validation to us.
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Figure 6: Example EWFS circuit with PEEK and REVERSE-1 settings. An example of the EWFS
circuit with GHZ friends using the random strategy where the friend Charlie consists of two qubits. Alice
uses a PEEK setting in this example circuit, while Bob uses the REVERSE-1 setting.

Alice′s qubit

Bob ′s qubit

Charlie0

Charlie1

Charlie2

Debbie

4Measurement

X

X

H
14 /15
RZ

0.122
RZ

H

H H

0

0.122
RZ

1

3.05
RZ

2

H

3

Figure 7: EWFS circuit where Alice measures all qubits of Charlie. An example of the EWFS
circuit with GHZ friends using the majority vote strategy where the friend Charlie consists of three qubits.
Alice uses a PEEK setting in this example circuit, while Bob uses the REVERSE-1 setting. Note that Alice
is measuring all the qubits of her friend in this case.
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For the case of GHZ friends, when measuring the all-zero state in the computational basis, we want to
assign a value of 1 and when measuring the all-ones state, we assign a value of −1. In the presence of noise,
other bitstrings can be measured as well. We use the majority vote to determine the value of the other
bitstrings. If n is the size of the friend system, which we assume to be odd, the measurement consists of the
following positive semidefinite matrices

F0 =
∑

H(x)<n/2

|x⟩⟨x| and F1 =
∑

H(x)>n/2

|x⟩⟨x|

where H(x) is the Hamming weight of the n-bit string x. The observable for Alice is then simply

A = F0 − F1.

The observable B for Bob is defined similarly.
In the ideal scenario, when there is no noise, the violations of the LF inequalities should match the

approach where we infer the friend’s branch by measuring a random qubit of the friend. However, as we
introduce noise, while the magnitude of the LF violations will be the same on average, there will be more
variation in the random approach. We demonstrate this by comparing the simulated violations using these
two approaches. The results of running the EWFS, where we measure just one qubit of the friend system
vs. the use of the majority vote observable for GHZ friends of increasing qubit sizes on quantum simulators
using depolarizing noise and readout error is depicted in Figure 8.

0 1 2 3 4 5 6 7 8 9 10 11
Branch Factor

1 2 3 4 5 6 7 8 9 10 11 12
Charlie size (number of qubits)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Random strategy

Ideal simulator
1% depolarizing noise
2% depolarizing noise
3% depolarizing noise

0 1 2 3 4 5 6 7 8 9 10 11
Branch Factor

1 2 3 4 5 6 7 8 9 10 11 12
Charlie size (number of qubits)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Majority vote strategy

Ideal simulator
1% depolarizing noise
2% depolarizing noise
3% depolarizing noise

Se
m

i-B
ru

kn
er

 V
io

la
tio

n 
Va

lu
e

Theoretical maximum No violation

Figure 8: A comparison between the “random” and “majority vote” strategies for EWFS. Each
plot considers how each strategy performs for progressively increasing depolarizing noise levels with fixed
1% readout error on all qubits. Each data point is run using 10000 shots and averaged over 10 trials. The
bottom x-axis ranges over the number of qubits in the quantum system size of Charlie, while the top x-axis
shows the corresponding branch factor.

This majority vote approach is one form of readout error mitigation, and future work can apply more
of these methods. For example, stabilizer checks on the friend’s unitary operation can be used for error
detection and post-selection. A bit-flip error in constructing the GHZ state for Charlie still results in states
with the same branch factor. One can consider this bit flip like a relabelling of the “logical” GHZ states
from, for example, |000⟩ = |O⟩L; |111⟩ = |1⟩L to |001⟩ = |O⟩L; |110⟩ = |1⟩L. However, Alice needs to know
on what qubit that error occurred to not incorrectly infer what branch Charlie is in. In this case, tracking
an error on the third qubit means Alice can assign the inverse of its measurement. As quantum processors
become more sophisticated, the full suite of error mitigation and correction techniques can be deployed to
characterize the target friend states with high fidelity.
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4.3 Experimental Results: LF Violations using GHZ friend states on quantum
computers

Using the majority vote approach for measurement described previously, we perform experiments on IBM
superconducting quantum computers to measure violations. Results from noisy model simulations and
hardware experiments are plotted in Figure 9. These experiments use the majority vote implementation of
EWFS from Section 4.2. In these plots, the y-axis is the value of the Semi-Brukner violation on the left-hand
side of the inequality in Equation (4). Thus, we have a violation when this value is above 0, as indicated
by the red dotted line. The green dotted lines indicate the maximum achievable theoretical value of 0.82843
(see Section 4). We plot these violations for experiments where the friend is prepared in a GHZ state of
increasing qubit number (bottom x-axis) corresponding to branch factors indicated on the top x-axis. The
point where the violation value crosses below the dotted red line is the maximum branch factor for which
we can show violations on that backend.

The leftmost plot shows results from a simulated backend running perfect simulations or quantum circuits
at 1%, 2%, and 3% per gate depolarizing noise rates. Perfect simulations have no limit to the size of violations
we expect to see, corresponding to the predictions of textbook quantum mechanics. For each noise rate, we
see violations decrease such that a 2% per gate noise rate would only support violations to branch factor 9,
and a 3% per gate noise rate supports a validation up to branch factor 4. These depolarizing simulations
do not include any specific gate set or qubit topology compilations. Thus, we expect them to be optimistic
predictions for real experiments where that compilation adds additional overhead.

The middle plot shows violations on various hardware emulators, including more sophisticated noise
models based on several superconducting and one ion trap emulator.

The rightmost plot shows violations obtained directly on quantum hardware: IBM’s superconducting
quantum processors Osaka, ibm sherbrooke, and ibm torino. While ibm osaka and ibm sherbrooke do
not show violations beyond branch factor 0, the ibm torino processor supports violations up to branch
factor 4. Importantly, fidelity is not the only driver of performance here. The ibm torino processor’s native
gates are better suited to our circuit, so it also has much lower gate counts, improving performance. On the
H1-1 Quantinuum device, we obtained a violation at the branch factor of as high as 16.

4.3.1 Validation of branch factor preparation

We use the methods in Section 4.1 to validate our violations on real hardware. This section shows that we
need confidence that our friend state is prepared with a state fidelity of greater than 99.66% to ensure LF
violations have been shown in the worst case. To estimate the friend’s state fidelity, we count the gates
needed to prepare the state and use the per-gate single and two-qubit error fidelities for the devices. IBM
Torino has a single and two-qubit gate errors that are sufficiently low to show violations up to branch factor
9, while for the Quantinuum H1-1 device the errors are low enough to allow for much higher branch factor
violations, higher than branch factor 16 that we observed violations for. In Figure 10, we plot the estimated
friend state fidelity vs. branch factor and the single and two-qubit gate counts for various hardware backends.

4.4 More branch factor from less QPU: controlled-random unitary friends and
Dicke states

In Section 4.3, we showed violations using only GHZ friends. However, it is reasonable to consider whether
other friend states might produce higher branch factors with the same limited noisy experimental resources.
This section discusses approaches and available resource tradeoffs when preparing different friend states while
targeting higher branch factors.

We may want to use quantum states for the friend system where the branch factor grows quickly as we
increase the number of qubits. In the case of the GHZ friends, we saw in Equation (13) that the branch
factor increases linearly in the number of qubits. However, when we use a controlled-random unitary, the
branch factor increases exponentially in the number of qubits, c.f. Equation (14). Controlled-random unitary
friends will obtain higher branch factors for the same number of qubits.

Inferring the branch of a controlled-random unitary friend is similar to the GHZ case. We have two
branches, the zero-state |0n⟩ and a Haar-random state |ψ⟩. In the noiseless case, we can distinguish with
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Figure 9: A comparison between simulator, fake hardware, and hardware for majority vote
EWFS. The first panel shows how increasing the depolarizing noise reduces the maximum friend size for
which a violation occurs. The second-panel plots over the FakeTorino, FakeOsaka, and FakeQuebec fake
IBM noise models as well as the H1-E, the emulator for the Quantinuum H1 ion trap quantum computer.
The third panel plots over the ibm osaka, ibm sherbrooke, ibm torino IBM hardware devices and the H1-1
Quantinuum hardware device. Note that the only IBM hardware device to obtain violations beyond branch
factor 0 is ibm torino, showing a violation at branch factor 4, while on the H1-1 device, we obtain a viola-
tion at branch factor 16. We note that the fake IBM devices used in the second panel differ from the IBM
hardware devices in the third panel. This is because, at the time of this writing, IBM decommissioned the
27-qubit devices ibm kolkata, ibm mumbai, ibm cairo, and ibm hanoi devices and also does not have cor-
responding fake noise models for the 127-qubit or more devices ibm osaka, ibm brisbane, ibm sherbrooke,
and ibm torino. We transpile the circuit before running for the specific coupling map topology for the fake
and real hardware. Further details on the transpilation are provided in Appendix A. For each plot, the
bottom x-axis ranges over the number of qubits in the quantum system size of Charlie, while the top x-axis
shows the corresponding branch factor. All IBM data points are run with 10000 shots over 10 trials. For the
H1-1 device, we ran each experiment with 200 shots and 4 trials, except for the experiment of size 17 which
we ran for 7 trials. Error bars are 3 standard deviations.
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Figure 10: (Left) A plot of the estimated fidelities of the friend state when prepared on different backends
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and two-qubit gate counts for compiled EWFS circuits on different backends.
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increasingly high probability the two branches with just one measurement: if you measure a non-zero bit-
string, the branch is |ψ⟩. If you measure |0n⟩, the branch could have been |ψ⟩, but the probability of this
goes to zero exponentially fast as n grows. This is more challenging in the presence of noise, mainly because
the branch |0n⟩ might evolve to a superposition of non-zero bitstrings. However, the highest amplitude
should still be on the |0n⟩ state, so with high probability, we will still correctly infer the correct branch. The
relevant observable in this case is, therefore, given by

A = |0n⟩⟨0n| −
∑
x ̸=0n

|x⟩⟨x|.

We observe violations by running the EWFS circuits in an ideal simulator using the controlled-random
unitary friends, which is observable for inferring branches. With small depolarizing noise, we still obtain
violations for a few qubits; see Figure 12. However, it looks to be challenging to show these same violations
on today’s quantum hardware. The main reason is that the Haar random unitaries are very complex because
they require many single and two-qubit gates from some fixed gate-set required from the hardware. Still,
more sophisticated processors will eventually be capable of delivering this performance. 6

One way to obtain violations using such (complicated) circuits on noisy hardware is to use states easily
distinguishable from the all-zero state, even in the presence of noise, while having a high swap complexity
with the all-zero state. For example, states with this property are Dicke states [BE19]. These are quantum
states on n qubits with amplitudes only on bitstrings with a Hamming weight of k for a choice of 0 ≤ k ≤ n
denoted by D(n, k). In [BE19], they show quantum circuits with circuit complexity O(kn). Assuming this
is also a lower bound, the equal superposition of such a state and the all-zero state would have branch factor
Ω(kn). For example, take k = n/2, so D(n, n/2) is an equal superposition over bitstrings with Hamming
weight n/2 and has circuit complexity O(n2). In the presence of bitflip noise, it is unlikely too many bits
get flipped to get close to the all-zero state. In this way, even in the presence of noise, we are unlikely to
measure the all-zero state. Also, the noisy all-zero state will have amplitudes on non-zero bitstrings, but
these will probably have low Hamming weight. For example, the observable

A =
∑

H(x)<n/3

|x⟩⟨x| −
∑

H(x)≥n/3

|x⟩⟨x|

should be able to infer the right branch with high probability in the presence of bitflip noise. But still,
these states are too complex (with many single qubit gates and CNOTs) to run on noisy hardware and
obtain violations. In Figure 12, we show some violations of the semi-Brukner inequality for small values of
depolarizing noise. In Figure 11, we plot the number of gates required to implement a Haar random unitary
and GHZ states on n qubits versus the branch factor. For the random unitary, we use the lower bound on
the branch factor 14, whereas for the GHZ states, we use the exact value 13. We don’t have a plot for Dicke
states as that would require an explicit lower bound, including constant factors on the circuit complexity.
However, we conjecture that it will lie between the GHZ state and the random unitary resource requirements
for both gates and qubits.

In Section 4.1.1, we consider several types of random quantum states that may be of interest because
they have protocols (of varying difficulty) to validate their preparation. Future work should consider whether
these states can also efficiently generate large branch factors with limited qubit counts and gate numbers.

5 Future Directions

This work introduces a program for testing Local Friendliness using observers of increasingly significant
branch factors. We explain how quantum computers of increasing power can run these Local Friendliness
tests using Extended Wigner’s Friend scenarios. We then show violations of Local Friendliness at small
scales using currently available superconducting processors.

It is important to note that the LF violations shown in this work are not loophole-free. For example, we
have not used the speed-of-light limitations on communication to separate Alice and Charlie from Bob and

6Note that supremacy experiments [AAB+19] are similar but not quite the same as what is needed. Here, we need not just
Haar-random unitaries but also controlled Haar-random unitaries. This increases the challenge for quantum processors.
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Figure 11: Number of single and two-qubit gates and number of qubits required to prepare
random unitary and GHZ states vs. branch factor. For the basis gate set, we use the single qubit
X, Y , and Z rotations and CNOT gate, and we use Qiskit to transpile the given circuits. We see a tradeoff
available for increasing branch factors depending on whether one is minimizing qubit number or gate count.
Focusing on lower gate counts makes GHZ friends preferable while focusing on smaller numbers of qubits
makes random unitary friends more preferable.

2 3 4 5

2.0

1.5

1.0

0.5

0.0

0.5

Controlled random unitary

Ideal simulator
0.005% depolarizing noise
0.01% depolarizing noise

1 2 3 4 5 6 7

1.5

1.0

0.5

0.0

0.5

Dicke states

Ideal simulator
0.005% depolarizing noise
0.01% depolarizing noise
0.02% depolarizing noise

Charlie Size (Number of qubits)

Se
m

i-B
ru

kn
er

 V
io

la
tio

n 
Va

lu
e

Theoretical maximum No violation
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of depolarizing noise. On the left, we consider a controlled-random unitary acting as the friends. On the
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random unitary case, one sees that we don’t obtain the optimal violation even in the ideal simulations. The
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Debbie. In principle, loophole-free Local Friendliness violations could be performed with networked quantum
computers over a quantum internet [WEH18]. Many proposals exist for building these quantum links today,
with companies and research groups investing in building them at scale. We anticipate that, as quantum
computers improve, quantum networks connecting them will also improve. Further, EWFS only needs two
nodes to be connected by a quantum link. Thus, Local Friendliness violations are an appealing fundamental
science application for the next generations of quantum computers and early quantum networks.

While this work ran EWFS on superconducting and ion trap quantum processors available over the cloud,
other types of quantum processors, including neutral atoms, silicon, and others, are being developed. As these
platforms evolve, some specific properties may be helpful for LF violations. For example, many neutral atom
platforms can natively execute global CZ gates [WDE+23,HBS+20]. Combined with the increasing number
of qubits available in neutral atom platforms, neutrals could be well suited to producing the GHZ-type states
we seek in larger and larger friends.

Furthermore, we could consider designing quantum processing systems optimized for producing LF vio-
lations at progressively larger branch factors. In a sense, general-purpose quantum computers are overkill
for running EWFS. We do not need flexible re-programmability. Instead, we need to produce, for example,
a specific controlled-random unitary (or GHZ state) that we can reverse unitarily. Perhaps a quantum ASIC
or purpose-built quantum system can scale to a significant branch factor with fewer engineering difficulties
than that needed for a large fault-tolerant quantum computer. It may even be that EWFS, with more than
two friends and more choices of measurement settings for Alice and Bob, might be advantageous in matching
theory with easily buildable experiments. Designing experimental systems can optimize performance both
by increasing the branch factor for fixed resources and also by preparing states whose branch factor can
be easily verified, as discussed in Section 4.1.1. This is a fresh direction for scaling up controlled quantum
systems for fundamental research.

Finally, there is an important outstanding theoretical question. What branch factors should we aim for?
Ideally, we would have milestones of specific branch factor sizes corresponding to ruling in or out meaningful
classes of physical systems as observers. For example, what is the branch factor of a single photon detector,
the human eye, or the human brain? This would add meaningful threshold milestones to experiments in the
program of Figure 3.

One approach is to work backward from physical systems that arguably most resemble human observers.
This is the approach taken in [WCR23] where the authors consider a reversible simulation of a human-level
artificial intelligence running on a QPU as the friend (QUALL-E). The authors estimate the size of a QPU
needed to perform experiments using a human-level artificial intelligence simulated on a QPU as the friend
observer at approximately 1019 logical qubits and logical depth of 1014 operations. While we don’t know
the details of what branch factor such a simulation might produce, we can estimate that a QPU capable of
running such a simulation could also produce GHZ states with branch factor of order 1019 as GHZ branch
factors scale with qubit number.

Alternatively, we can take inspiration from other experiments where the quantum-classical cut is placed.
In the loop-hole free Bell violations [GVW+15], the experimenters needed to determine at what point it
was sufficient to declare the information classical in the measurement chain. For reference, in [GVW+15]
Figure 2 shows the spacetime diagram ending at the end of the detection period. After this point, sufficient
separation to ensure no loopholes was no longer needed. This indicates that there is some accepted physical
system that becomes classical before it reaches a human. Calculating the corresponding branch factor for
this system would give a meaningful target. Future work can look to calculate these branch factors for other
meaningful systems to produce a road map of increasingly meaningful Local Friendliness violations.

Code availability

Software that implements the EWFS circuit and the code used to generate the data and plots in this work
is available on GitHub at [Uni24].
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A Running EWFS on quantum hardware

To run the EWFS circuit on a hardware backend, the circuit must be transpiled to target the hardware
architecture. Transpiling the circuit in Qiskit is achieved via the transpile function. This function takes
an optionally specified optimization level argument on how much optimization to perform on the circuit.
This value equals 1 by default (with a maximum value of 3 and a minimum of 0), in which the value of 1
applies a light optimization across the overall circuit. As the optimization level argument increases, more
aggressive strategies are applied to the circuit via transpilation to reduce gates in the circuit and optimally
route qubit mappings. In our case, we wish to avoid gate-collapsing optimizations and instead focus on ideal
routing. To achieve this, we set optimization level=0 to avoid any gate reductions. All software used
for conducting experiments, generating plot figures, and processing data from both hardware and simulator
devices is available on GitHub [Uni24].

A.1 Running EWFS on IBM quantum hardware

We hand-optimize a routing layout position for the virtual qubits and physical device qubits. We perform this
by supplying an argument of initial layout to the transpile method. We construct the layout pattern
based on the hardware coupling map and opt for attaining a chain-like connectivity of qubits for Alice,
Bob, Charlie, and Debbie. An example of such a layout construction on the ibm torino device is shown in
Figure 13, but the same layout orientation strategy was followed for the other IBM hardware devices as well.
As an additional step in our transpilation pipeline, we optimize single-qubit gate decompositions using the
Optimize1qGatesDecomposition class via the PassManager in Qiskit.

A.2 Running EWFS on Quantinuum H1-1 quantum hardware

Unlike the IBM hardware we target, the routing optimizations do not need to be considered, as the H1-1
device coupling map corresponds to a fully connected 20-node complete graph. This means there is no need
to hand-optimize an optimal routing layout since every node is connected to every other. We encoded our
EWFS circuits in Qiskit (as we did for IBM hardware) and transpiled these circuits using TKET [tke] to
target the Quantinuum H1 architecture. To run our experiments, we used the Nexus [nex] platform.
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Figure 13: The calibrations coupling map for the CNOT readout error of CNOT gates for the ibm torino

device. Lighter colors indicate a higher CNOT error, while darker shades indicate a lower CNOT error.
When targeting this device, we aim to maintain a chain-like orientation for our initial layout and also pick
a layout that optimizes for the lowest readout error. Specifically, we assign nodes labeled 43 to Debbie
(highlighted in green), 45 to Alice (highlighted in red), and 44 to Bob (highlighted in blue). The remaining
nodes [46, 47, 48, 49, 50, 51, 52, 37, 33, 32, 31] (highlighted in yellow)represent the size of Charlie’s system
for progressively higher qubit systems. The nodes with the outer layer highlight indicate the qubit layout
used for our experiments. This image was produced with device readout assignment error data obtained via
the IBM Quantum Platform [IBM] on 8-3-2024.
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