#### Introduction

Motivation: T gates are expensive to implement fault tolerantly, so unitaries which minimize the number of T gates also minimize the cost of implementation.

- In this work, we are interested in:
- Unitaries *without* ancillae
- *Exact* implementation over Clifford+T gate set

#### Notation

Pauli matrices:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Clifford+T gate set:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}, \ T = \begin{pmatrix} 1 & 0\\ 0 & e^{i\frac{\pi}{4}} \end{pmatrix}, \ CNOT = \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

**Pauli operators:** The set of *n*-qubit Pauli operators

$$\mathcal{P}_n = \{Q_1 \otimes Q_2 \otimes \cdots \otimes Q_n : Q_i \in \{\mathbb{I}, X, Y, Z\}\},\$$

**T-count**: The minimum  $m \in \mathbb{N}$  for unitary U for which

 $\mathcal{T}(U) = e^{i\phi}U = C_m T_{(q_m)} C_{m-1} T_{(q_m-1)} \cdots T_{(q_1)} C_0$ 

where  $\phi \in [0, 2\pi)$ ,  $C_i$  are in the *n*-qubit Clifford group,  $q_j \in \{1, \cdots, n\}$ , and  $T_{(r)}$  indicates the T gate acting on the rth qubit.

# A Decomposition for Clifford + T Unitaries $U \in \mathcal{J}_n$

Define

$$R(P) = \frac{1}{2} \left( 1 + e^{i\frac{\pi}{4}} \right) \mathbb{I} + \frac{1}{2} \left( 1 - e^{i\frac{\pi}{4}} \right) P, \quad P \in \mathcal{P}_n.$$

**Proposition 1.** For any  $U \in \mathcal{J}_n$  there exists a phase  $\phi \in \mathcal{J}_n$  $[0, 2\pi)$ , a Clifford  $C_0 \in \mathcal{C}_n$  and Paulis  $P_i \in \mathcal{P}_n \setminus \{\mathbb{I}\}$  for  $i \in \mathcal{I}_n$  $[\mathcal{T}(U)]$  such that

$$U = e^{i\phi} \left(\prod_{i=\mathcal{T}(U)}^{1} R(P_i)\right) C_0.$$

#### Acknowledgments

This research was supported by Canada's NSERC, MITACS, CIFAR, and CFI.



# An Algorithm for the T-count

# David Gosset<sup>2,3</sup>, Vadym Kliuchnikov<sup>1,3</sup>, Michele Mosca<sup>1,2,3</sup>, Vincent Russo<sup>1,3</sup>

<sup>1</sup>David R. Cheriton School of Computer Science, <sup>2</sup>Department of Combinatorics & Optimization, and <sup>3</sup>Institute for Quantum Computing University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

# Main Problem

COUNT-T: Given  $U \in \mathcal{J}_n$  and  $m \in \mathbb{N}$ , decide if  $\mathcal{T}(U) \leq m$ .

# The Group $\mathcal{J}_n$ Generated by Clifford and T gates

**Clifford**+**T** group: The group generated by the *n*-qubit Clifford+T gate set  $\mathcal{J}_n = \langle H_{(i)}, T_{(i)}, CNOT_{(i,j)} : i, j \in [n] \rangle$ 

Giles and Selinger's characterization of the Clifford+T group [4]: An n-qubit unitary U is an element of the Clifford+T group if and only if its matrix elements are in the ring

$$\mathbb{Z}\left[i,\frac{1}{\sqrt{2}}\right] = \left\{\frac{a+bi+c\sqrt{2}+di\sqrt{2}}{\sqrt{2}^k} : a,b,c,d\in\mathbb{Z},k\in\mathbb{N}\right\}$$

and det  $U = e^{i\frac{\pi}{8}Nr}$  for some  $r \in [8]$  and  $N = 2^n$ .

# An Algorithm for the T-count (Special Case)

We focus on a special case of COUNT-T where m is even and where  $U \in \mathcal{J}_n$  can be written as in Proposition 1 with  $\phi = 0$  and  $C_0 = \mathbb{I}$ . This special case only illustrates the main idea of our algorithm (see our paper [1] for more details).

#### Simplified version of our algorithm for COUNT-T (tailored to a special case)

**OPRECOMPUTE SOLUTE databases of unitaries with T-count at most**  $\frac{m}{2}$ . Generate a database  $\mathcal{D}$  of all unitaries of the form

$$U = \prod_{i=\frac{m}{2}}^{1} R(I$$

and then sort the database according to the lexicographic order on matrices. If the unitary U is ever inserted in the database then stop and output  $\mathcal{T}(U) \leq m$  (in this case we have  $\mathcal{T}(U) \leq \frac{m}{2}$ ), otherwise proceed to step 2. Note that  $\mathcal{D}$ contains at most  $2^{nm} = N^m$  unitaries

**2 Meet-in-the-middle search.** For each  $W \in \mathcal{D}$ , let  $V_W = W^{\dagger}U$  and use binary search (using the fact that the database) is sorted) to determine if  $V_W \in \mathcal{D}$ . If  $V_W \in \mathcal{D}$  for some  $W \in \mathcal{D}$  then output  $\mathcal{T}(U) \leq m$ ; otherwise output  $\mathcal{T}(U) > m$ .

Our algorithm solves COUNT-T using  $\mathcal{O}(N^m \text{poly}(m, N))$  time and space requirements.

# From the Special Case to the General Algorithm

There are three main differences between the special case of COUNT-T and the general case. The most non-trivial difference is that  $\mathcal{C}_0$  can be any Clifford  $\mathcal{C}_n$ . In this case  $U = WVC_0$  where W and V are

$$V = \prod_{i=\frac{m}{2}}^{1} R(P_i), \quad W = \prod_{i=\frac{m}{2}}^{1} R(S_i)$$

for some  $S_i, P_i \in \mathcal{P}_n$ .

Naive solution: In Step 2, search for  $V_W = W^{\dagger}UC_0^{\dagger}$  instead of  $V_W = W^{\dagger}U$  for each  $C_0 \in \mathcal{C}_n$ . **Disadvantage:** This introduces an overhead of  $\Omega(2^{n^2})$ .

Our Solution: Avoid overhead by using a labeling scheme of unitaries. Different unitaries that differ by an overall phase and/or right-multiplication by a Clifford have the same label.

(arXiv:1308.4134)

# **T-count of Toffoli and Fredkin is 7**

An application of our result is that the following circuits, which do not make use of ancilla qubits, are T-optimal.

Figure 1: Toffoli cannot be implemented using 3 qubits with less than 7 T gates.



Figure 2: Fredkin cannot be implemented using 3 qubits with less than 7 T gates.

We implemented our algorithm in C++.

| [1] | D. G $(2013)$ |
|-----|---------------|
| [2] | М. А          |
| [3] | M. A<br>Desig |
|     |               |

[6] V. Kliuchnikov, D. Maslov, M. Mosca. arXiv:1206.5236, (2012).



### **Open Problems**

• Does there exist a polynomial time (as a function of N and m) algorithm for calculating the T-count of a given unitary?

#### Software

- Two qubits: Generated coset databases  $\mathcal{D}_0^2, \cdots, \mathcal{D}_6^2$  (taking) 3.96 GB of space).
- Three qubits: Generated coset databases  $\mathcal{D}_0^3, \cdots, \mathcal{D}_3^3$  (taking) 4.60 GB of space).
- This enables us to run the two-qubit algorithm with m = 12or the three qubit algorithm with m = 6.

### References

- [1] D. Gosset, V. Kliuchnikov, M. Mosca, V. Russo. arXiv:1308.4134, (3)
  - Amy, D. Maslov, M. Mosca. arXiv:1303.2042, (2013).
  - Amy, D. Maslov, M. Mosca, M. Roetteler. Computer-Aided ign of Integrated Circuits and Systems, 32:818-830, (2013).
- [4] B. Giles, P. Selinger. Physical Review A, 87(3):032332, (2013).
- [5] V. Kliuchnikov. arXiv:1306.3200, (2013).