

 ρ_1

Alice

Optimal discrimination of quantum sequences

<u>Tathagata Gupta¹</u>, Shayeef_Murshid², Vincent Russo³ and Somshubhro Bandyopadhyay⁴

¹Physics and Applied Mathematics Unit, Indian Statistical Institute, India; tathagatagupta@gmail.com

²Electronics and Communication Sciences Unit, Indian Statistical Institute, India; shayeef.murshid91@gmail.com

³Unitary Fund; vincent@unitary.fund

⁴ Department of Physical Sciences, Bose Institute, India; som@jcbose.ac.in

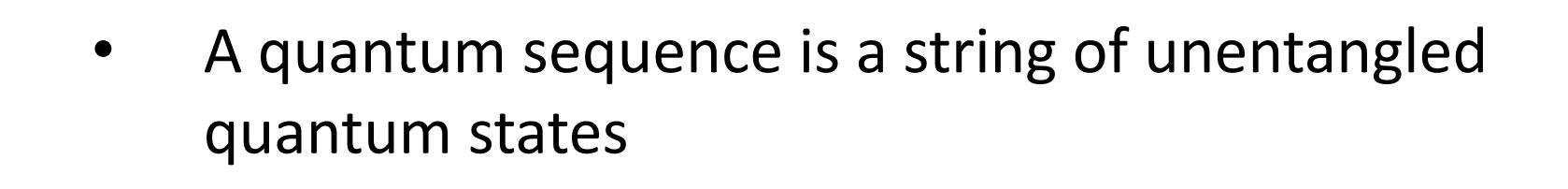
Quantum sequences

 ρ_3

 ρ_4

 ρ_5

Bob

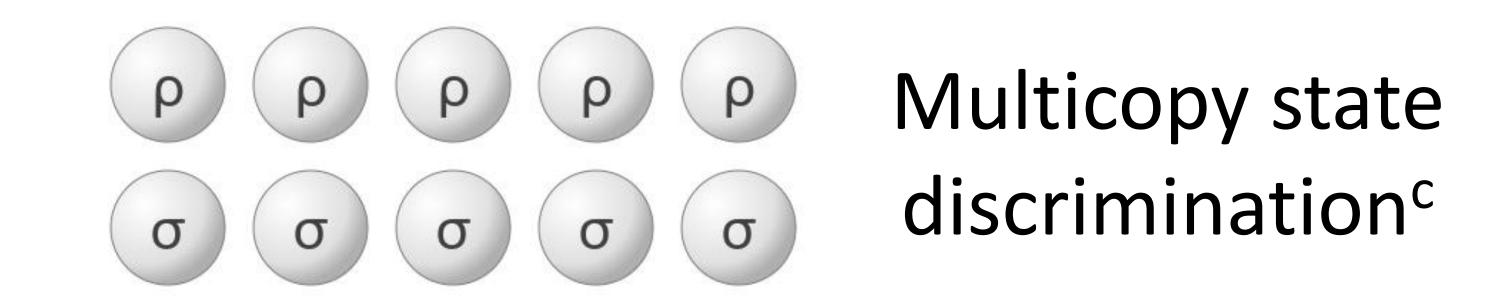


 The objective is to identify the state of the sequence, both in minimum-error or unambiguous paradigm

Examples

 ρ_2

Quantum change point^b



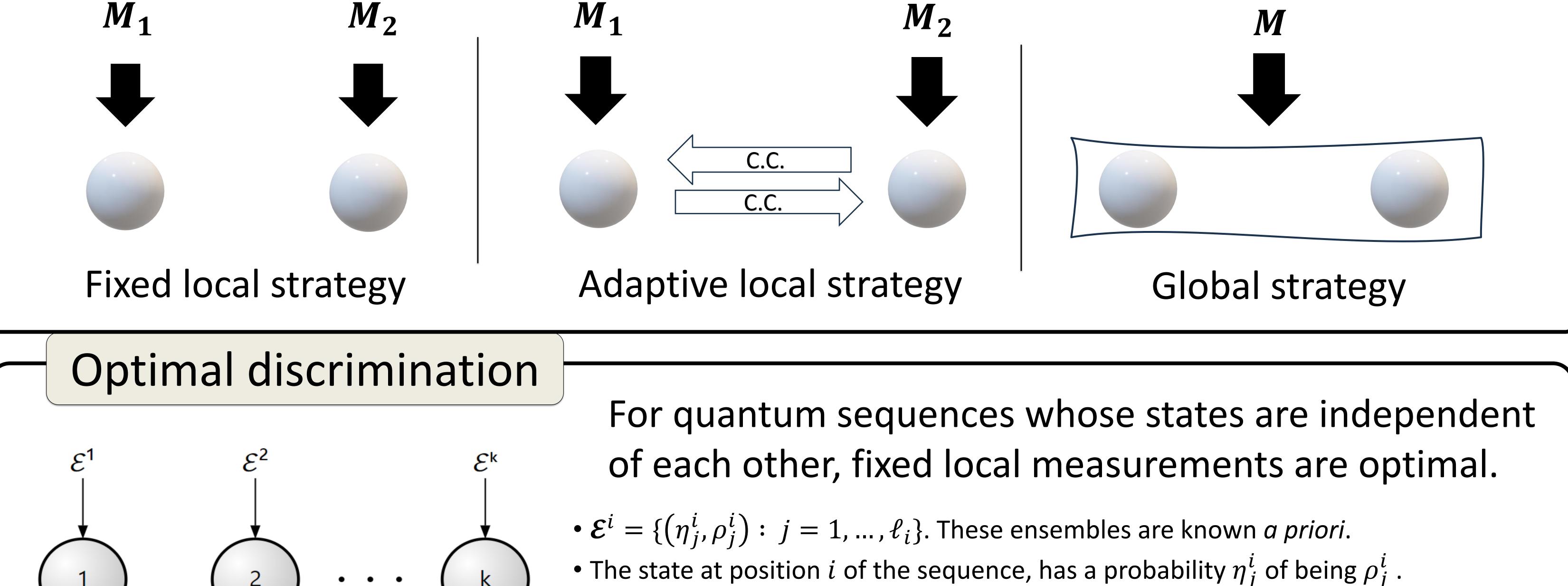
Quantum key distribution^a

Quantum Channel

Classical Channel

Eve

Sequence discrimination



- This makes them independent but *non*-identically distributed sequences of quantum states.
- The k-length sequences form the ensemble $\mathcal{E}_{seq} = \{\eta_{x_1}^1 \dots \eta_{x_k}^k, \rho_{x_1}^1 \otimes \dots \otimes \rho_{x_k}^k \mid x_i \in [\ell_i] \text{ for all } i \in [k]\}.$
- The optimal measurement strategy for discriminating \mathcal{E}_{seq} constitute performing on the i^{th} particle, the optimal measurement for discriminating \mathcal{E}^i .

Theorem: Let p_{seq} and p_i denote the optimal probability for minimum-error or unambiguous discrimination

of the ensembles
$$\mathcal{E}_{seq}$$
 and \mathcal{E}^{i} , respectively. Then $p_{seq} = \prod_{i=1}^{k} p_{i}$

^aC. Bennett *et al.*, Theoretical Computer Science **560**, 7 (2014). ^bG. Sentis *et al.*, Phys. Rev. Lett. **117**, 150502 (2016). ^cA. Acin *et al.*, Phys. Rev. A **71**, 032338 (2005).