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A key concept of quantum information theory is that accessing information encoded in a quantum system

requires us to discriminate between several possible states the system could be in. A natural generalization of

this problem, namely, quantum sequence discrimination, appears in various quantum information processing

tasks, the objective being to determine the state of a finite sequence of quantum states. Since such a sequence

is a composite quantum system, the fundamental question is whether an optimal measurement is local, i.e.,

comprising measurements on the individual members, or collective, i.e. requiring joint measurement(s). In

some known instances of this problem, the optimal measurement is local, whereas in others, it is collective.

But, so far, a definite prescription based solely on the problem description has been lacking. In this paper,

we prove that if the members of a given sequence are drawn secretly and independently from an ensemble

or even from different ensembles, the optimum success probability is achievable by fixed local measurements

on the individual members of the sequence, and no collective measurement is necessary. This holds for both

minimum-error and unambiguous state discrimination paradigms.

One of the characteristic features of quantum theory

is that composite quantum systems can possess nonlo-

cal properties. This is often associated with entangled

systems violating a Bell inequality [1, 2]. However, an

unentangled system, whose parts may not have inter-

acted in the past, can also exhibit nonlocality, concep-

tually different from the Bell type [3–7]. Specifically,

when determining the state of an unentangled system,

known to be in one of several possible states, a joint

measurement of the whole system is sometimes neces-

sary. Thus a fundamental question in quantum infor-

mation is when does optimal extraction of information

from a composite system demands access to the whole

and when it does not.

This question frequently arises in many quantum in-

formation theoretic protocols of practical importance,

such as quantum change point detection [8–10], mul-

tiple copy state discrimination [11], and quantum key

distribution [12]. In all these scenarios, essentially, the

objective is to determine the state of an unknown quan-

tum sequence (ρ1, . . . , ρk) whose members ρi are drawn

from ensembles of which we have complete knowledge.

For a given sequence of finite length, this boils down to

the problem of sequence discrimination, a natural gener-

alization of the well-studied quantum state discrimina-

tion problem [13–16], where one aims to discriminate

between the possible states a quantum system could be

in. Since the state of a sequence (ρ1, . . . , ρk) is of the

form ρ1 ⊗ · · · ⊗ ρk, the question is whether the optimal

measurement, optimal according to some well-defined

figure of merit, is local, i.e., comprising measurements

on the individual members or collective, i.e. requiring

joint measurement(s). Moreover, even when local ac-

cess is sufficient, it is necessary to know whether coordi-

nated or adaptive strategies provide any advantage over

fixed strategies that do not involve adaptation based on

the outcomes of already performed measurements. In

fact, we know of instances where the optimal measure-

ment is local and fixed [17], local and adaptive [18], and

collective [19]; in particular, in the quantum change-

point problem, it is collective [8], whereas in multiple-

copy discrimination, depending on the problem specifi-

cation, it could be either of the two [18, 19].

Unfortunately, given a sequence discrimination prob-

lem, we do not have any definite characterization or pre-

scription that could, at the very least, tell us about the

nature of the optimal measurement. As it is, discrimi-

nating between states of a composite quantum system is

known to be challenging [5–7] and for sequences more

so as they could be of any finite length and also come in

different varieties: they could be i.i.d., where the mem-

bers of a sequence are independent (i.e., selection of

an individual member does not depend on what states

have already appeared in the earlier positions) and iden-

tically distributed (i.e., the members are drawn from the

same ensemble), or non-i.i.d., where members are ei-

ther drawn independently but from different ensembles

or not independently at all.

In this paper, we take a significant step towards ad-

dressing whether an optimal measurement is local or

collective only from the problem description. We prove

that if the members of a sequence are selected secretly

and independently either from the same ensemble or

even from different ensembles, the optimal measure-

ment is local; in particular, it constitutes fixed measure-

ments on the individual elements. The result holds for

both minimum-error and unambiguous state discrimina-

tion paradigms. For the latter, however, additional as-
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sumptions are required for a nontrivial result [20, 21].

The main implication of our result is the following.

We have shown that if the members of a given sequence

are selected independently, irrespective of the probabil-

ity distribution associated with the selection being iden-

tical or different, the optimal measurement to determine

its state is always local and fixed. Therefore, if the inde-

pendence condition does not hold, all types of measure-

ments mentioned earlier, are possible. Future works,

therefore, only need to address the optimality question

in the non-independent scenario.

Suppose we are given an unknown sequence of length

k ∈ N and wish to determine its state as well as pos-

sible. The members of the given sequence are secretly

and independently drawn from potentially different but

known ensembles. The ensemble from which the i-th
member is drawn is labelled as E i, where

E i =
{(

ηi
j , ρi

j

)
: j = 1, . . . , ℓi

}
(1)

with ρi
j being density operators on Cdi for di > 2. Thus,

for a sequence of length k, we have k such ensembles

E1, . . . , E k. This way, we can account for all possibili-

ties: every member is drawn from a different ensemble;

some are drawn from the same ensemble, in which case,

though the labelling of ensembles is different, they are,

in fact, identical; every member is drawn from the same

ensemble, so here no indexing of ensembles would be

necessary. Note that the last one corresponds to i.i.d.

sequences, whereas every other case corresponds to in-

dependent but not identically distributed sequences.

Thus, given a sequence of length k, we only know

that the i-th member is drawn from E i and ηi
j is the prior

probability of it being ρi
j. With this, the ensemble of all

possible sequences of length k is given by

Ek =
{(

η1
x1
· · · ηk

xk
, ρ1

x1
⊗ · · · ⊗ ρk

xk

)}
, (2)

where each xi ∈ [ℓi] for all i ∈ [k]. A simple count-

ing argument shows that Ek contains ℓ = ∏
k
i=1 ℓi se-

quences. The objective is to determine whether the opti-

mal measurement discriminating between the elements

of Ek is collective or local.

The optimality of a measurement subject to a given

set of states depends on the choice of measurement strat-

egy. Here, we consider both minimum-error and un-

ambiguous state discrimination paradigms. The former

minimizes the average error and applies to any set of

states. The corresponding measure is the success proba-

bility, the maximum probability that the unknown state

is correctly determined [22, 23]. The latter [24–26],

however, applies to sets of states that satisfy a specific

condition, and if this condition is met, this approach

correctly determines the unknown state with a nonzero

probability; for example, a set of pure states can be un-

ambiguously discriminated if and only if they are lin-

early independent [20]. Closed-form solutions for both

are known in the two-state case [23, 27] and in spe-

cific instances where the states satisfy certain symmetry

properties [28]. For generic ensembles, finding solu-

tions is generally hard; however, semidefinite programs

exist [29, 30], and the optimum success probability can

be obtained as the output of such programs.

In what follows, we first state the main result and then

go on to prove it for both minimum-error and unambigu-

ous discrimination.

Theorem 1. Let p (E ) denote the optimum probability

for minimum-error or unambiguous discrimination be-

tween the elements of an ensemble E . Then

p (Ek) =
k

∏
i=1

p
(
E i
)

.

Thus the optimal measurement for discriminating be-

tween the elements of Ek is local and comprises of indi-

vidual measurements on the members of the sequence.

In particular, for the i-th member the local measurement

corresponds to the optimal measurement that discrimi-

nates between the elements of the ensemble E i. Note

that, for unambiguous discrimination, a nontrivial re-

sult, i.e., p (Ek) > 0 is obtained provided for each en-

semble E i, the corresponding elements can be unam-

biguously discriminated.

Minimum-error discrimination of quantum

sequences.—We need the following two results to

prove Theorem 1 for this case. The first one is the

Holevo–Yuen–Kennedy–Lax Theorem [31, 32], which

provides a necessary and sufficient condition for the

optimality of a minimum-error discrimination mea-

surement for a given ensemble (note that the optimal

measurement is not unique [33]). We only state the

theorem here, the proof can be found in [32].

Theorem 2 (Holevo–Yuen–Kennedy–Lax [31, 32]).

Let N be a positive integer and X be a complex Eu-

clidean space of finite dimension. Given an ensemble

E = {(qi, σi) : i ∈ [N]} of density operators on X , a

measurement {M1, . . . , MN} is optimal for minimum-

error discrimination of the elements of E if and only if

N

∑
i=1

qiσi Mi � qjσj (3)

for all j ∈ [N].

The second result we need is the following lemma,

whose proof can be found in the supplemental material

(SM).
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Lemma 3. Let A, B, C, and D be positive semidefinite

operators such that A � C and B � D. Then A ⊗ B �
C ⊗ D.

We now present the proof of Theorem 1 for

minimum-error discrimination.

Proof. Without loss of generality, assume that an op-

timal measurement for minimum-error discrimination

between the elements of the ensemble E i is Mi =
{Mi

x}
ℓi
x=1 where Mi

x ∈ Pos(Cdi) and ∑
ℓi
x=1 Mi

x = 1di

for all x ∈ [ℓi] and i ∈ [k], where Pos(Cdi) denotes the

set of positive semidefinite operators on Cdi . It follows

that

ℓi

∑
x=1

ηi
xρi

x Mi
x � ηi

yρi
y (4)

for all y ∈ [ℓi] and i ∈ [k]. This represents a set of ℓi

conditions, one for each state in E i. We select k of these

conditions, one for each i ∈ [k]. Our selection can be

denoted by a k-tuple (y1, . . . , yk), which means that we

are considering inequality (4) for the states ρ1
y1

, . . . , ρk
yk

.

Taking the tensor product of the operators on both

sides of these inequalities and applying Lemma 3 we

get

k⊗

i=1

ℓi

∑
xi=1

ηi
xi

ρi
xi

Mi
xi
�

k⊗

i=1

ηi
yi

ρi
yi

, (5)

where yi ∈ [ℓi] for all i ∈ [k]. The right side of the

above inequality is the sequence ρ1
y1
⊗ · · ·⊗ ρk

yk
. By se-

lecting all possible k-tuples from inequality (4) we will

have a collection of conditions, one for each sequence,

which is precisely what inequality (5) represents. The

left-hand side of (5) can be expanded as

∑
x1,...,xk

η1
x1
· · · ηk

xk
(ρ1

x1
⊗ · · ·⊗ ρk

xk
)(M1

x1
⊗ · · ·⊗ Mk

xk
).

As Mi = {Mi
x}

ℓi
x=1 forms a measurement on the en-

semble E i, we observe that

∑
x1,...,xk

M1
x1
⊗ · · · ⊗ Mk

xk
=

ℓ1

∑
x1=1

M1
x1
⊗ · · · ⊗

ℓk

∑
xk=1

Mk
xk

=1d1
⊗ · · · ⊗ 1dk

,
(6)

showing that {M1
x1
⊗ · · · ⊗ Mk

xk
} is a bonafide mea-

surement on Ek. This, together with equation (5),

demonstrates that the measurement whose elements are

M1
x1
⊗ · · · ⊗ Mk

xk
is indeed an optimal measurement

for discriminating the elements of the ensemble Ek, as

established by Theorem 2.

Therefore, the optimal measurement for discriminat-

ing the sequences can be achieved by performing the op-

timal measurement for each ensemble on its correspond-

ing state. As a result, the probability of correctly identi-

fying the entire sequence is the product of the probabili-

ties of correctly identifying each individual state within

the sequence.

Unambiguous discrimination of quantum

sequences.— Unlike the minimum-error case, for

non-trivial unambiguous discrimination, a set of

quantum states Q = {σ1, . . . , σN} has to satisfy the

following condition.

Let supp(Q) denote the Hilbert space spanned by the

eigenvectors of the matrices {σ1, . . . , σN} that corre-

spond to nonzero eigenvalues. Additionally, let S(E )
represent the set of states of an ensemble E .

Lemma 4. (from [21]) The set of density operators

Q = {σ1, . . . , σN} can be unambiguously discrimi-

nated if and only if supp(Q) 6= supp(Qi) where Qi =
Q \ {σi} for all i ∈ [N]. If σi are rank 1 operators

(pure states), then this condition is same as the set Q
being linearly independent.

Since we now want to discriminate the set of se-

quences unambiguously, they must satisfy Lemma 4.

That is, for S(Ek) to be unambiguously discriminable

it must hold that

supp(S(Ek)) 6= S(Ek) \ {ρ1
x1
⊗ · · · ⊗ ρk

xk
} (7)

for all xi ∈ [ℓi] and i ∈ [k]. In the following lemma

(proof in SM), we show that a set of quantum sequences

satisfies this condition if and only if the individual en-

sembles do.

Lemma 5. The set of quantum sequences satisfies the

condition supp(S(Ek)) 6= S(Ek) \ {ρ1
x1
⊗ · · · ⊗ ρk

xk
}

for all xi ∈ [ℓi] and i ∈ [k] if and only if the ensembles

E i satisfy supp(S(E i)) 6= supp(S(E i)) \ {ρi
j} for all

i ∈ [k] and j ∈ [ℓi].

The following theorem is immediate from Lemmas 4

and 5.

Theorem 6. The elements of S(Ek) can be unambigu-

ously discriminated if and only if the elements of S(E i)
can be unambiguously discriminated for each i.

We now present the proof of Theorem 1 for the

unambiguous case. The unambiguous discrimination

problem of mixed quantum states can be cast as a

semidefinite program (SDP) [34]. Let us first present

this SDP for an ensemble of states E = (Q, q), where

Q = {σi}
N
i=1 is a set of density operators acting on
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Cd and q = (q1, . . . , qN) is the vector of a priori

probabilities of states of Q. Without loss of generality,

we can assume that the eigenvectors of the states of

Q that correspond to nonzero eigenvalues span Cd.

This is analogous to assuming that for unambiguous

discrimination of pure states, we can take the dimension

of the Hilbert space they live in to equal the dimension

of the space spanned by them. We define Q̃i as the

intersection of all kernels Kj of σj, excluding Ki. This

can be expressed mathematically as Q̃i = ∩N
j=1,j 6=iKj.

We also introduce Θi, a d × ri matrix whose columns

form an orthonormal basis for Q̃i, where ri is the

dimension of Q̃i. With these definitions in place, we

can formulate the SDP for determining the optimal

probability of unambiguous discrimination of the

ensemble E as follows

Primal problem

maximize:
N

∑
i=1

qi Tr(σiΘi∆iΘ
†
i )

subject to:
N

∑
i=1

Θi∆iΘ
†
i � 1, (8a)

∆i � 0, ∀i ∈ [N]

Dual problem

minimize: Tr(Z)

subject to: Θ†
i (Z − qiσi) Θi � 0 ∀i ∈ [N],

Z � 0, (8b)

where ∆i is an ri × ri matrix for each i ∈ [N]. The

optimization variables in this formulation are the N ma-

trices denoted by ∆i. Our proof strategy will be to use

Slater’s theorem which states that if the primal problem

is convex and strict feasibility holds, then the duality

gap is zero and the primal and dual optimal values are

equal [35]. We’ll first assume primal and dual optimal

variables for the ensemble SDPs. Then we will use these

variables to construct primal and dual feasible solutions

for the sequence SDP. Finally we will show that these

variables make the primal and dual value equal. Ap-

plying Slater’s theorem to the sequence SDP, we will

conclude that these must be the optimal solutions.

Proof. Consider the ensemble

E i = {(ηi
1, ρi

1), . . . , (ηi
ℓi

, ρi
ℓi
)} (9)

where ρi
j are di × di density operators and j ∈ [ℓi].

Let Si
j = S(E i) \ {ρi

j} for some j ∈ [ℓi] and S̃i
j be

the intersection of the kernels of all the density matri-

ces of E i, except for ρi
j. That is, S̃i

j = ∩ℓi
t=1,t 6=jK

i
t

where Ki
t is the kernel of ρi

t. Let Θi
j be a di × ri

j ma-

trix whose columns form an arbitrary orthonormal basis

for S̃i
j (which is of dimension ri

j). The optimal probabil-

ity of unambiguous discrimination of the elements of E i

is denoted by p(E i) and let ∆i
j be the ri

j × ri
j matrices

that achieve this optimum. In addition to being posi-

tive, these matrices satisfy ∑
ℓi
j=1 Θi

j∆
i
jΘ

i
j

†
� 1. (See

SM for the SDPs of the individual ensembles and the

sequence.) We denote the optimal dual variable for en-

semble E i by Zi, which is also a positive matrix and

satisfies Θi
j
†
(

Zi − ηi
jρ

i
j

)
Θi

j � 0. The optimal primal

and dual variables satisfy

ℓi

∑
j=1

ηi
j Tr

(
ρi

jΘ
i
j∆

i
jΘ

i
j
†
)
= Tr(Zi) = p(E i). (10)

Now, we turn to the sequence ensemble given by equa-

tion (2) and consider the SDP of its unambiguous dis-

crimination. Note that there are ℓ number of sequence

states in this ensemble, and a state is labeled by the in-

dex (x1, . . . , xk), which is a k-tuple of indices where

xi ∈ [ℓi] for all i ∈ [k]. Let us denote by S̃(x1, . . . , xk)
the intersection of the kernels of all the states of Ek ex-

cept for ρ1
x1
⊗ · · · ⊗ ρk

xk
. That is,

S̃(x1, . . . , xk) =
⋂

(y1,...,yk)∈[ℓ1]×···×[ℓk]
(y1,...,yk) 6=(x1,...,xk)

K(y1, . . . , yk)

where K(y1, . . . , yk) is the kernel of ρ1
y1
⊗ · · · ⊗ ρk

yk
.

This subspace has a decomposition (see Theorem 9 in

SM) as follows

S̃(x1, . . . , xk) = S̃1
x1
⊗ · · · ⊗ S̃k

xk

= (∩ℓ1
j=1,j 6=x1

K1
j )⊗ · · · ⊗ (∩

ℓk
j=1,j 6=xk

Kk
j ). (11)

We first give a prescription to construct matrices

Θ(x1, ..., xk) whose columns form an orthonormal basis

of S̃(x1, . . . , xk). From equation (11), it can be seen that

these matrices are of size ∏
k
i=1 di ×∏

k
i=1 ri

xi
(xi ∈ [ℓi])

and a simple procedure to construct them is to take

Θ(x1, ..., xk) = Θ1
x1
⊗ · · · ⊗ Θk

xk
. For a feasible pri-

mal variable ∆(x1, ..., xk), we take the tensor product

of the optimal primal variables, ∆(x1, ..., xk) = ∆1
x1
⊗

· · · ⊗ ∆k
xk

. This operator is positive since it is the tensor

product of positive operators. Also, the defined opera-
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tors satisfy (using Lemma 3),

∑
(x1,...,xk)

Θ(x1, ..., xk)∆(x1, ..., xk)Θ(x1, ..., xk)
†

= ∑
(x1,...,xk)

(Θ1
x1

∆1
x1

Θ1
x1

†
)⊗ · · · ⊗ (Θk

xk
∆k

xk
Θk

xk

†
)

� 1.
(12)

Now consider the dual variable Z = Z1 ⊗ · · · ⊗ Zk,

which is positive due to the positivity of the operators

Zi for all i ∈ [k]. We also know that these variables

satisfy Θi
xi

†
ZiΘ

i
xi
� Θi

xi

†
(ηi

xi
ρi

xi
)Θi

xi
for all xi ∈ [ℓi]

and i ∈ [k]. By taking tensor products for the indices

(x1, ..., xk) we get (using Lemma 3)

Θ(x1, ..., xk)
†(Z − ηx1

· · · ηxk
ρx1

⊗ · · · ⊗ ρxk
)Θ(x1, ..., xk) � 0. (13)

This shows that the primal and dual variables we intro-

duced are feasible, and they both make the respective

objective value equal to ∏i p(E i) by the trace property

of the tensor product. Therefore, p(Ek) must be equal

to ∏i p(E i).

Conclusions.—Sequence discrimination problems

arise in various quantum information processing tasks,

where the objective is to determine the state of a

sequence of finite length. The main question here is

whether an optimal measurement is local or collective,

i.e., whether it suffices to measure the individual mem-

bers of the sequence or not. In this paper, we showed

that as long as the members of the sequences are

drawn independently from the same ensemble or even

from different ensembles, the optimal measurement in

both minimum-error and unambiguous discrimination

paradigms is local and comprises fixed measurements

on the individual components. It follows that if we

give up the condition of independent selection of the

members of a sequence, the optimal measurement could

be either local and fixed, local and adaptive[18], or

collective (partially or wholly) [19].

Our result also shows that independent sequences do

not exhibit nonlocality in the sense some other unentan-

gled systems do, as collective measurement is not nec-

essary for optimal extraction of information from such

sequences. However, in the context of quantum state

exclusion, one may consider them nonlocal, for an en-

tangled measurement is necessary, as demonstrated by

the PBR result [36] and its generalizations [37].

A significant part of our proof relied on solving the

SDP formulation of the problem using the strong duality

theorem [35]. While SDP has been successfully used to

solve various problems in quantum information theory

[38, 39], we believe our approach could help to solve

problems in many-body unentangled systems.

Our result could be immediately applied to settings

of quantum key distribution protocols [40, 41] or simi-

lar ones. In these protocols, Alice sends a sequence of

quantum states - selected independently from a known

ensemble - to Bob, who measures each state individu-

ally. However, if Bob can store the incoming states in

quantum memory, he may think about performing a col-

lective measurement on the entire sequence to extract

more information. Our result rules out this possibility,

as these sequences are i.i.d.

A natural direction for future research involves do-

ing away with the independence assumption. Can there

be sequences of dependent quantum states whose op-

timal discrimination is still achievable by fixed, local

measurements? A systematic study involving the set of

states, the nature of the joint probability distribution for

the states of a sequence and the nature of optimal mea-

surement to discriminate them will be interesting to in-

vestigate.
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Supplemental material

Proof of Lemma 3

Proof. Given that A � C and B � D, we have that A − C and B − D are positive semidefinite. To show A ⊗ B �
C ⊗ D, consider the expression

A ⊗ B − C ⊗ D = (A ⊗ B)− (A ⊗ D) + (A ⊗ D)− (C ⊗ D)

= (A ⊗ (B − D)) + ((A − C)⊗ D).
(14)

Since A − C and B − D are positive semidefinite, their tensor products with any positive semidefinite operator

also yield positive semidefinite operators. Hence, A ⊗ (B − D) and (A − C) ⊗ D are positive semidefinite. The

sum of two positive semidefinite operators remains positive semidefinite. Therefore, A ⊗ B − C ⊗ D is positive

semidefinite, thus A ⊗ B � C ⊗ D.

Proof of Lemma 5

We will need the following two lemmas to prove our claim.

Lemma 7. Let k be a positive integer and V be a vector space. For each i ∈ [k], let Vi ⊆ V and Wi ⊆ Vi be

subspaces. If ai ∈ Vi and ai /∈ Wi, for each i ∈ [k], then a1 ⊗ · · · ⊗ ak /∈ W1 ⊗ · · · ⊗Wk.

Proof. For each i ∈ [k], let {ui
1, . . . , ui

si
} be a basis of Wi, and extend it to a basis {ui

1, . . . , ui
si

, vi
1, . . . , vi

ti
} of Vi.

First, express each ai in terms of the basis of Vi:

ai = bi +
ti

∑
j=1

λi
jv

i
j, (15)

where bi ∈ Wi. Since ai /∈ Wi, there exists at least one ji such that λi
ji
6= 0. Consider the tensor product

a1 ⊗ · · · ⊗ ak. Its expansion includes the term:

(λ1
j1
· · · λk

jk
)(v1

j1
⊗ · · · ⊗ vk

jk
). (16)

This term is non-zero because each λi
ji
6= 0. Observe that v1

j1
⊗ · · · ⊗ vk

jk
/∈ W1 ⊗ · · · ⊗Wk, as each vi

ji
/∈ Wi.

Finally, note that a1 ⊗ · · · ⊗ ak /∈ W1 ⊗ · · · ⊗Wk, because its expansion contains a non-zero term that is not in

W1 ⊗ · · · ⊗Wk.

Lemma 8. Let Vi be vector spaces and Bi = {bi
1, . . . , bi

ℓi
} ⊆ Vi for i ∈ [k]. Let Wi = span(Bi) be the subspaces

spanned by Bi. Then

W1 ⊗ · · · ⊗Wk = span{b1
x1
⊗ · · · ⊗ bk

xk
| xi ∈ [ℓi], ∀i ∈ [k]}. (17)

Proof. We will show that W1 ⊗ · · · ⊗Wk = span{b1
x1
⊗ · · · ⊗ bk

xk
| xi ∈ [ℓi], ∀i ∈ [k]} by proving both inclusions.

First, consider

span{b1
x1
⊗ · · · ⊗ bk

xk
| xi ∈ [ℓi], ∀i ∈ [k]} ⊆ W1 ⊗ · · · ⊗Wk. (18)

For all i ∈ [k] and each xi ∈ [ℓi], we have bi
xi

∈ Wi. Therefore, b1
x1

⊗ · · · ⊗ bk
xk

∈ W1 ⊗ · · · ⊗ Wk. As

W1 ⊗ · · · ⊗Wk is a subspace, it contains the span of these tensors.

Now, for the reverse inclusion

W1 ⊗ · · · ⊗Wk ⊆ span{b1
x1
⊗ · · · ⊗ bk

xk
| xi ∈ [ℓi], ∀i ∈ [k]}. (19)
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Let w1 ⊗ · · · ⊗ wk be an arbitrary pure tensor in W1 ⊗ · · · ⊗Wk. For each i ∈ [k], we can write wi = ∑
ℓi
j=1 λi

jb
i
j

as wi ∈ Wi = span(Bi). Expanding the pure tensor

w1 ⊗ · · · ⊗ wk =
ℓ1

∑
j1=1

· · ·
ℓk

∑
jk=1

(λ1
j1
· · · λk

jk
)(b1

j1
⊗ · · · ⊗ bk

jk
) (20)

This expansion shows that w1 ⊗ · · · ⊗ wk ∈ span{b1
x1
⊗ · · · ⊗ bk

xk
| xi ∈ [ℓi], ∀i ∈ [k]}. As W1 ⊗ · · · ⊗Wk is

spanned by such pure tensors, the inclusion follows. Therefore, W1 ⊗ · · · ⊗Wk = span{b1
x1
⊗ · · · ⊗ bk

xk
| xi ∈

[ℓi], ∀i ∈ [k]}.

Proof of Lemma 5. We first prove that if S(E i) satisfies Lemma 4 for each i, then S(Ek) also satisfies Lemma 4.

Therefore, we assume that for each i ∈ [k], S(E i) satisfies Lemma 4. For each ρi
j ∈ S(E i), let A(i, j) =

{|ψ(i, j, t)〉}
mij

t=1 be the set of eigenvectors corresponding to nonzero eigenvalues of ρi
j, where mij is the number

of such eigenvectors. Thus, supp(ρi
j) = span(A(i, j)). Define

Ai = {|ψ(i, j, t)〉 : t ∈ [mij], j ∈ [ℓi]},

Ai
y = {|ψ(i, j, t)〉 : t ∈ [mij], j ∈ [ℓi], j 6= y} for y ∈ [ℓi].

(21)

By our assumption, for each i ∈ [k], span(Ai) 6= span(Ai
y) for all y ∈ [ℓi]. Thus, there exists ti,y ∈ [miy] such

that |ψ(i, y, ti,y)〉 /∈ span(Ai
y). Suppose, for contradiction, that S(Ek) does not satisfy Lemma 4. Then there exist

yi ∈ [ℓi] for all i ∈ [k] such that

supp(S(Ek)) = supp(S(Ek) \ {ρ1
y1
⊗ · · · ⊗ ρk

yk
}). (22)

The eigenvectors corresponding to non-zero eigenvalues of ρ1
y1
⊗ · · · ⊗ ρk

yk
are

{|ψ(1, y1, s1,y1
)〉 ⊗ · · · ⊗ |ψ(k, yk, sk,yk

)〉 : si,yi
∈ [mi,yi

]}. (23)

Thus,

supp(S(Ek) \ {ρ1
y1
⊗ · · · ⊗ ρk

yk
})

= span({|ψ(1, x1, s1,x1
)〉 ⊗ · · · ⊗ |ψ(k, xk, sk,xk

)〉 : si,xi
∈ [mi,xi

], xi 6= yi ∀i ∈ [k]})

=
k⊗

i=1

span({|ψ(i, xi, si,xi
)〉}), si,xi

∈ [mi,xi
], xi 6= yi ∀i ∈ [k]

= span(A1
y1
)⊗ · · · ⊗ span(Ak

yk
),

(24)

where we have used Lemma 7 in the second equality. This equals supp(S(Ek)) by our assumption. However by

Lemma 8 we see that,

|ψ(1, y1, t1,y1
)〉 ⊗ · · · ⊗ |ψ(k, yk, tk,yk

)〉 /∈ span(A1
y1
)⊗ · · · ⊗ span(Ak

yk
), (25)

leading to a contradiction.

We now prove the converse by showing that if for some i ∈ [k], S(E i) does not satisfy Lemma 4 then S(Ek) also

fail to satisfy Lemma 4. Therefore, assume that for some i ∈ [k], the set S(E i) does not satisfy Lemma 4. Then

there exists a y ∈ [ℓi] such that span(Ai) = span(Ai
y). This implies |ψ(i, y, si,y)〉 ∈ span(Ai

y) for all si,y ∈ [mi,y].
Consider

S(Ek) \ {ρ1
1 ⊗ · · · ⊗ ρi

y ⊗ · · · ⊗ ρk
1}. (26)

The support of the removed state is

span{|ψ(1, 1, s1,1)〉 ⊗ · · · ⊗ |ψ(i, y, si,y)〉 ⊗ · · · ⊗ |ψ(k, 1, sk,1)〉 : sa,b ∈ [ma,b]}. (27)



9

Each element

|ψ(1, 1, s1,1)〉 ⊗ · · · ⊗ |ψ(i, y, si,y)〉 ⊗ · · · ⊗ |ψ(k, 1, sk,1)〉 (28)

is in span(A1
x1
) ⊗ · · · ⊗ span(Ai

y) ⊗ · · · ⊗ span(Ak
xk
) where xj 6= 1 for all j ∈ [k] except for j = i, for which

xj = y. However,

span(A1
x1
)⊗ · · · ⊗ span(Ai

y)⊗ · · · ⊗ span(Ak
xk
) ⊂ supp(S(Ek) \ {ρ1

1 ⊗ · · · ⊗ ρi
y ⊗ · · · ⊗ ρk

1}). (29)

This shows that

supp(S(Ek) \ {ρ1
1 ⊗ · · · ⊗ ρi

y ⊗ · · · ⊗ ρk
1}) = supp(S(Ek)), (30)

proving that S(Ek) fails to satisfy Lemma 4.

Proof of Theorem 9

Theorem 9. Let k ∈ N, and for each i ∈ [k], let S(E i) = {ρi
1, . . . , ρi

ℓi
} be a set of ℓi quantum states which are

density operators on Cdi for some integer di. Define S(Ek) = {ρ1
x1
⊗ · · · ⊗ ρk

xk
: xi ∈ [ℓi], ∀i ∈ [k]} as the set of

all k-length tensor product sequences where the i-th component comes from S(E i).

For each i ∈ [k] and j ∈ [ℓi], let S̃i
j be defined as

S̃i
j =

⋂

m∈[ℓi],m 6=j

ker(ρi
m). (31)

For (x1, . . . , xk) ∈ [ℓ1]× · · · × [ℓk], let S̃(x1, . . . , xk) be defined as

S̃(x1, . . . , xk) =
⋂

(y1,...,yk)∈[ℓ1]×···×[ℓk]
(y1,...,yk) 6=(x1,...,xk)

ker(ρ1
y1
⊗ · · · ⊗ ρk

yk
). (32)

Then, for all (x1, . . . , xk) ∈ [ℓ1]× · · · × [ℓk], it holds that

S̃(x1, . . . , xk) = S̃1
x1
⊗ · · · ⊗ S̃k

xk
. (33)

Proof. We expand both sides of Equation (33) in terms of the kernels. The right side can be written as

S̃1
x1
⊗ · · · ⊗ S̃k

xk
=




ℓ1⋂

j=1,j 6=x1

ker(ρ1
j )


⊗ · · · ⊗




ℓk⋂

j=1,j 6=xk

ker(ρk
j )




=
⋂

ji 6=xi,∀i

(
ker(ρ1

j1
)⊗ · · · ⊗ ker(ρk

jk
)
)

.

(34)

The second equality follows from the fact that if {V i
j}

ℓi
j=1 are subspaces of V i for i ∈ [k], then it holds that




ℓ1⋂

j=1

V1
j


⊗ · · · ⊗




ℓk⋂

j=1

V k
j


 =

⋂

(j1,...,jk)∈[ℓ1]×···×[ℓk]

V1
j1
⊗ · · · ⊗ V k

jk
. (35)

The left side of Equation (33) can be expanded as follows

S̃(x1, . . . , xk) =
(ℓ1,...,ℓk)⋂

(y1,...,yk)=(1,...,1)
(y1,...,yk) 6=(x1,...,xk)

ker(ρ1
y1
⊗ · · · ⊗ ρk

yk
)

=
(ℓ1,...,ℓk)⋂

(y1,...,yk)=(1,...,1)
(y1,...,yk) 6=(x1,...,xk)

(
ker(ρ1

y1
)⊗ C

d2 ⊗ · · · ⊗ C
dk + · · ·+ C

d1 ⊗ · · · ⊗ C
dk−1 ⊗ ker(ρk

yk
)
)

.

(36)
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The second equality follows from the fact that if ϕi is a linear operator on vector space Vi for i ∈ [k] and its kernel

is denoted by ker(ϕi), then the following relation holds:

ker(ϕ1 ⊗ · · · ⊗ ϕk) =
k

∑
i=1

V1 ⊗ · · · ⊗ ker(ϕi)⊗ · · · ⊗ Vk. (37)

Now for each k-tuple (y1, . . . , yk) 6= (x1, . . . , xk), consider ker(ρ1
y1
) ⊗ Cd2 ⊗ · · · ⊗ Cdk + · · · + Cd1 ⊗ · · · ⊗

Cdk−1 ⊗ ker(ρk
yk
). This sum contains ker(ρ1

y1
)⊗ · · · ⊗ ker(ρk

yk
) and thus contains

⋂ (
ker(ρ1

j1
)⊗ · · · ⊗ ker(ρk

jk
)
)

where ji 6= xi for all i ∈ [k]. Therefore, we conclude:

S̃(x1, . . . , xk) ⊇
⋂

ji 6=xi,∀i

(
ker(ρ1

j1
)⊗ · · · ⊗ ker(ρk

jk
)
)

. (38)

For the converse, we will show that the following relation holds


 ⋂

ji 6=xi,∀i

(
ker(ρ1

j1
)⊗ · · · ⊗ ker(ρk

jk
)
)



⊥

⊆
(

S̃(x1, . . . , xk)
)⊥

, (39)

where for a subspace V , V⊥ denotes its orthogonal complement. First, we express the right side of the above relation

as follows:

(
S̃(x1, . . . , xk)

)⊥
=




⋂

(y1,...,yk)
(y1,...,yk) 6=(x1,...,xk)

ker(ρ1
y1
⊗ · · · ⊗ ρk

yk
)




⊥

= ∑
(y1,...,yk)

(y1,...,yk) 6=(x1,...,xk)

ker(ρ1
y1
⊗ · · · ⊗ ρk

yk
)⊥

= ∑
(y1,...,yk)

(y1,...,yk) 6=(x1,...,xk)

Im(ρ1
y1
⊗ · · · ⊗ ρk

yk
)

(40)

where Im(ρ) denotes the image of an operator ρ. In the second equality, we have used the fact that the orthogonal

complement of the intersection of subspaces is equal to the sum of the orthogonal complement of individual sub-

spaces: (V1 ∩ · · · ∩ Vn)⊥ = V⊥
1 + · · ·+ V⊥

n where Vi’s are subspaces. This identity also allows us to write the left

side of Equation (39) as a sum of subspaces


 ⋂

ji 6=xi,∀i

(
ker(ρ1

j1
)⊗ · · · ⊗ ker(ρk

jk
)
)



⊥

= ∑
(j1,...,jk)
ji 6=xi,∀i

(
ker(ρ1

j1
)⊗ · · · ⊗ ker(ρk

jk
)
)⊥

. (41)

This can be further expanded by noting that for subspaces V1, . . . ,Vn, we have

(V1 ⊗ · · · ⊗ Vn)
⊥ = V⊥

1 ⊗ · · · ⊗ Vn + · · ·+ V1 ⊗ · · · ⊗ V⊥
n

+ V⊥
1 ⊗ V⊥

2 ⊗ · · · ⊗ Vn + · · ·+ V1 ⊗ · · · V⊥
n−1 ⊗ V⊥

n

...

+ V⊥
1 ⊗ · · · ⊗ V⊥

n .

(42)

Each term in the above sum is of the form W1 ⊗ · · · ⊗Wn where Wi is either Vi or V⊥
i , and there is at least one

index a ∈ [n] for which Wa = V⊥
a . Therefore, each term on the right side of Equation (41) is a sum of terms like

(L1
j1
⊗ · · · ⊗ Lk

jk
). That is,

(ker(ρ1
j1
)⊗ · · · ⊗ ker(ρk

jk
))⊥ = L1

j1
⊗ · · · ⊗ Lk

jk
(43)
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where Li
ji
= ker(ρi

ji
) or Li

ji
= (ker(ρi

ji
))⊥ and there is at least one index a ∈ [k] for which La

ja
= (ker(ρa

ja
))⊥.

Let us now consider a pure tensor u1 ⊗ · · · ⊗ uk ∈ L1
j1
⊗ · · · ⊗ Lk

jk
, where ua ∈ (ker(ρa

ja
))⊥ = Im(ρa

ja
) for

some a ∈ [k] and ja 6= xa. This means that ua = ρa
ja
(va

ja
) for some va

ja
∈ C

da . For some other index b, where

Lb
jb
= ker(ρb

jb
), ub can be written as ∑

ℓb
ib=1 ρb

ib
(vb

ib
) where vb

ib
∈ Cdb for all ib. This follows from the assumption

that supp(Ai) (the span of all the eigenvectors of the states of Si that correspond to nonzero eigenvalues) spans Cdi

for all i. Therefore, this pure tensor can be written as

u1 ⊗ · · · ⊗ uk

=
ℓ1

∑
i=1

ρ1
i (v

1
i )⊗ · · · ⊗ ρa

ja
(va

ja
)⊗ · · · ⊗

ℓk

∑
i=1

ρk
i (v

k
i )

(44)

where the sum appears in those places whose corresponding L equals the kernel. This can be written as

∑ ρ1
j1
(v1

j1
)⊗ · · · ⊗ ρa

ja
(va

ja
)⊗ · · · ⊗ ρk

jk
(vk

jk
)

=∑ (ρ1
j1
⊗ · · · ⊗ ρa

ja
⊗ · · · ⊗ ρk

jk
)(v1

j1
⊗ · · · ⊗ va

ja
⊗ · · · vk

jk
)

(45)

where the sum is over those indices whose corresponding L is equal to the kernel.

Therefore, the pure tensor, which was assumed to be an element of L1
j1
⊗ · · · ⊗ Lk

jk
is shown to belong to

∑
(y1,...,yk)

(y1,...,yk) 6=(x1,...,xk)

Im(ρ1
y1
⊗ · · · ⊗ ρk

yk
) (46)

since there is at least one index a ∈ [k] that satisfies ja 6= xa.

Now observe that L1
j1
⊗ · · · ⊗ Lk

jk
is spanned by pure tensors and since


 ⋂

ji 6=xi,∀i

(
ker(ρ1

j1
)⊗ · · · ⊗ ker(ρk

jk
)
)



⊥

(47)

is sum of spaces of the form L1
j1
⊗ · · · ⊗ Lk

jk
, it is spanned by pure tensors as well. The span of these pure tensors

form a subspace in

∑
(y1,...,yk)

(y1,...,yk) 6=(x1,...,xk)

Im(ρ1
y1
⊗ · · · ⊗ ρk

yk
) (48)

and any element of


 ⋂

ji 6=xi,∀i

(
ker(ρ1

j1
)⊗ · · · ⊗ ker(ρk

jk
)
)



⊥

(49)

also belongs to this subspace and hence to

∑
(y1,...,yk)

(y1,...,yk) 6=(x1,...,xk)

Im(ρ1
y1
⊗ · · · ⊗ ρk

yk
) =

(
S̃(x1, . . . , xk)

)⊥
. (50)

Therefore, the converse is established.
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Semidefinite program of unambiguous discrimination of sequences

The SDPs of the ensembles and the sequences follow straightforwardly from the SDP given in Equation (8) in the

main text. However, for the reader’s convenience, we write them here explicitly.

The SDP for the optimal probability of unambiguous discrimination of the states of ensemble E i is the following

Primal problem

maximize:

ℓi

∑
j=1

ηi
j Tr(ρi

jΘ
i
j∆

i
jΘ

i
j

†
)

subject to:

ℓi

∑
j=1

Θi
j∆

i
jΘ

i†
j � 1,

∆i
j � 0, ∀j ∈ [ℓi]

Dual problem

minimize: Tr(Zi)

subject to: Θi
j

†
(

Zi − ηi
jρ

i
j

)
Θi

j � 0 ∀j ∈ [ℓi],

Zi � 0.

(51)

Here Θi
j is an di × ri

j matrix whose columns form an arbitrary orthonormal basis for Si
j (of dimension ri

j).

The ensemble Ek consists of length k sequences of quantum states that are chosen independently,

Ek = {(η1
x1
· · · ηk

xk
, ρ1

x1
⊗ · · · ⊗ ρk

xk
) : xi ∈ [ℓi] ∀i ∈ [k]}.

The SDP for its optimal unambiguous discrimination is the following

Primal problem

maximize:

ℓ1

∑
x1=1

· · ·
ℓk

∑
xk=1

η1
x1
· · · ηk

xk
Tr(ρ1

x1
⊗ · · · ⊗ ρk

xk
Θ(x1, ..., xk)∆(x1, ..., xk)Θ(x1, ..., xk)

†)

subject to:

ℓ1

∑
x1=1

· · ·
ℓk

∑
xk=1

Θ(x1, ..., xk)∆(x1, ..., xk)Θ(x1, ..., xk)
† � 1, (52)

∆(x1, ..., xk) � 0, ∀xi ∈ [ℓi] ∀i ∈ [k].

Dual problem

minimize: Tr(Z)

subject to: Θ(x1, ..., xk)
†(Z − ηx1

· · · ηxk
ρx1

⊗ · · · ⊗ ρxk
)Θ(x1, ..., xk) � 0 ∀xi ∈ [ℓi] ∀i ∈ [k], (53)

Z � 0.

Here the matrices Θ(x1, ..., xk) and ∆(x1, ..., xk) are ℓ in number, one for each k-tuple (x1, ..., xk).


