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Abstract

Quantum Volume is a full-stack benchmark for near-term quantum computers. It quantifies the largest
size of a square circuit which can be executed on the target device with reasonable fidelity. Error mitigation
is a set of techniques intended to remove the effects of noise present in the computation of noisy quantum
computers when computing an expectation value of interest. Effective quantum volume is a proposed metric
that applies error mitigation to the quantum volume protocol in order to evaluate the effectiveness not only
of the target device but also of the error mitigation algorithm. Digital Zero-Noise Extrapolation (ZNE) is an
error mitigation technique that estimates the noiseless expectation value using circuit folding to amplify errors
by known scale factors and extrapolating to the zero-noise limit. Here we demonstrate that ZNE, with global
and local unitary folding with fractional scale factors, in conjunction with dynamical decoupling, can increase
the effective quantum volume over the vendor-measured quantum volume. Specifically, we measure the effective
quantum volume of four IBM Quantum superconducting processor units, obtaining values that are larger than
the vendor-measured quantum volume on each device. This is the first such increase reported.

1 Introduction

Quantum Volume (QV) [1–5] is a proposed metric for evaluating the capability of error-prone quantum computers
in the NISQ era [6]. The intention of the Quantum Volume protocol is to measure the largest square circuit acting
on n qubits with depth d = n which can be computed with reasonably high fidelity on a target Quantum Processing
Unit (QPU) 1. A QV circuit is composed of alternating layers of random qubit index permutations and random
SU(4) two-qubit operations. The logical diagram of a QV circuit is given in Figure 1. Each of the d layers of
two-qubit SU(4) gate operations act on n′ := ⌊n

2 ⌋ pairs of qubits, meaning that if n is odd then one qubit will be
idle in each layer. The Quantum Volume protocol is based on the heavy output generation problem [7], where a
single QV circuit U has an ideal bitstring output distribution given in eq. (1)

pU (x) = | ⟨x|U |0⟩ |2. (1)

Given the ideal distribution pU (x) for a single QV circuit U , each probability for all 2n possible states is sorted
p1 ≤ p2 · · · ≤ p2n . Eq. (2) defines the set of heavy bitstrings HU , given the median of all of the probabilities pmedian

and all of the classically computed bitstring probabilities pU (x),

HU = {x ∈ {0, 1}n : pU (x) > pmedian}. (2)

Given the set HU , the heavy output probability (HOP) is the probability of measuring a bitstring which belongs
to HU . Empirically, given the measured bitstrings obtained by executing a Quantum Volume circuit, the HOP can

∗Email: epelofske@lanl.gov
†Email: vincent@unitary.fund
1Typically, a quantum computer passing the QV protocol for n qubits is said to a have a quantum volume of 2n. Here, we will

simply use the notation of n instead of 2n.

1

ar
X

iv
:2

30
6.

15
86

3v
1 

 [
qu

an
t-

ph
] 

 2
8 

Ju
n 

20
23



. . .

. . .

. . .

. . .

. . .

. . .

. . .

|0⟩

π1

SU(4)

π2

SU(4)

πd

SU(4)
|0⟩

|0⟩
SU(4) SU(4) SU(4)

|0⟩

|0⟩
SU(4) SU(4) SU(4)

|0⟩

|0⟩
1 2 d

Figure 1: Circuit drawing for a logical QV circuit acting on n = 7 qubits, where each layer d = 1, . . . , d = 7 consists
of a random permutation of the qubit labels followed by n′ = 3 = ⌊ 7

2⌋ random SU(4) gates acting on consecutive
pairs of (the permuted) qubits. This figure was realized with Quantikz [8].

QPU name IBM Quantum
processor type

Number of qubits Vendor-measured
Quantum Volume

Measured (ZNE)
effective quantum
volume

ibmq toronto Falcon r4 27 5 6
ibm geneva Falcon r8 27 5 6
ibm auckland Falcon r5.11 27 6 7
ibm hanoi Falcon r5.11 27 6 7

Table 1: IBM Quantum superconducting processor summary from the experiments presented in this work. The
basis gates for all four of these devices are CX, ID, RZ, SX, X. Quantum Volume and Effective Quantum Volume
numbers are reported as n instead of 2n.

be estimated by taking the proportion of the measurements which are in the set HU , out of the total number of
measurements that were made.

As it was originally proposed, the QV protocol [1, 2] specifies that some reasonably large number of samples
(e.g. at least 10) is measured from at least 100 randomly generated QV circuits that are compiled and executed
on a target quantum computer which we wish to measure the computational capabilities of. Therefore, for each
QV circuit, we can estimate the associated HOP and, by averaging over all QV circuits, we obtain an estimate of

the mean HOP. For a noiselss quantum computation the mean HOP approaches 1+ln(2)
2 ≈ 0.85 [1, 7] in the limit

of large n. The QV protocol [1] passes for size n if a quantum computer is able to reliably sample an ensemble
of random QV circuits at a mean HOP greater than 2

3 . If the computation loses all coherence, and the circuit is
effectively randomly sampling bits, then the mean HOP converges to 0.5.

Quantum error mitigation, alongside quantum error suppression, is a family of techniques that can be utilized
to remove or suppress errors in a computation performed on a NISQ computer [9–13]. Quantum error mitigation
is thought of as an intermediate step in the current development of quantum computers, eventually leading to the
development of fully realized quantum error correction [14, 15]. One of the properties of Quantum Volume that
makes it relevant for evaluating quantum computing performance is that it involves the full stack of software and
hardware—including what parts of the hardware are used, and what compilation is used [4]. Effective quantum vol-
ume [16] is a proposed variant of the Quantum Volume metric which uses error mitigation strategies in conjunction
with Quantum Volume in order to evaluate the quality of quantum computations that can be performed on modern
quantum computers with error mitigation. Zero Noise Extrapolation (ZNE) [10, 17–26] is a general-purpose error
mitigation algorithm that uses expectation values computed at different noise levels in order to extrapolate the
computation to its zero noise limit. The different noise levels can be indirectly created by circuit folding operations
that leave the circuit invariant in its theoretical expectation value, but purposely increase the number of instruc-
tions (gates) which means there will be more errors within the computation on the NISQ computer, such that the
amount of noise within the computation will have been scaled by a pre-determined scale factor λ. The effect of
ZNE when applied to a Quantum Volume circuit is to effectively increase the error-mitigated HOP, obtaining a
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result closer to the ideal limit of 1+ln(2)
2 . In this paper we experimentally demonstrate increased effective quantum

volume compared to the vendor-benchmarked QV values, using ZNE, on four IBM Quantum devices. The results
are summarized in Table 12.

2 Methods

Raw Random QV
circuits, repre-
sented in QASM

Compile the
circuits to a
target graph

using the Qiskit
transpiler with

heavy optimization

Fold the QASM
circuits using Mitiq

Adapt to hardware
native gateset,
with no circuit
optimization

Apply digital
dynamical de-
coupling pass

Figure 2: High-level workflow of the methodology for estimating the effective quantum volume with zero-noise
extrapolation. First, the raw uncomputed QV circuits are initially defined with arbitrary connectivity and basis
gates U3 and CX. Second, the Qiskit transpiler is run on the target hardware subgraph with optimization level=3.
Third, the QASM circuits are folded via either global or local folding with Mitiq. Fourth, the native gateset is
adapted to RZ, CX, SX, and X using the Qiskit transpiler with optimization level=0. Fifth, an optional step, X-X
digital dynamical decoupling is applied.

The QV ZNE protocol steps that we use for this paper are outlined at a high level in Figure 2.

2.1 Generation of quantum volume circuits

Figure 3: All subgraph isomorphisms for n = 6 on heavy hex connectivity.

Figure 4: All subgraph isomorphisms for n = 7 on heavy hex connectivity.

The first step in executing the ZNE QV benchmark protocol is to construct raw, random, Quantum Volume
circuits of the form shown in Figure 1. In this case, the raw QV circuits are generated using Qiskit [27] and are
defined with arbitrary connectivity and native gates of CX (e.g. CNOT) and u3 (e.g. arbitrary single qubit rotation).
Next, the raw QV circuits are transpiled using a single call to the Qiskit [27] transpiler (optimization level set
to the maximum of 3) to target a specific device, thereby requiring a specific qubit connectivity and a specific
native gateset [4]. In this case, the native gateset is CX, RZ, X, SX. The target connectivity is a subgraph of a
heavy hex hardware graph. In order to reduce compilation times, only the possible subgraph isomorphisms for a
given size n are used to compile all of the QV circuits. These possible isomorphic subgraphs for n = 6 and n = 7
are shown in Figures 3 and 4. This compilation allows us to compile the QV circuits to a small number of different

2Note that since these experiments were executed, both ibm geneva and ibmq toronto have been decommissioned
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connectivities, and then map those compiled circuits to various parts of the chip without the need to re-compile.
When executing the circuits on the IBM Quantum devices, we enumerated over multiple hardware subgraphs,
similar to ref. [4], but did not enumerate over every possible hardware subgraph as in ref. [4] because the ZNE
protocol adds significant time and computation overhead to the already time-intensive Quantum Volume protocol.
However, we did enumerate over as many hardware subgraphs as could be executed, given the constraints of queue
times and device errors.

2.2 Noise scaling by unitary folding

Once each circuit was compiled to the fixed part of the hardware, the circuits were then folded (i.e. compiled with
more gates) using the Mitiq software package [22] in order to scale up the level of noise. Specifically, we used
two different techniques known as global folding and random local folding, which are both designed to effectively
increase the error rate when running the circuits on a noisy quantum processor. [10, 17–19, 21].

Let U = LdLd−1 . . . L1 be the a decomposition of the full circuit as a sequence of d layers and let W =
LdLd−1...Ld−k−1 be the fraction of the full circuit corresponding to the last k layers. Global folding transforms the
input circuit U as follows 3

U → UW †W, (3)

where k depends on the noise scale factor λ. More precisely, k is chosen as the integer part of d(λ − 1)/2 , such
that the new depth d′ = d+ 2k is approximately scaled as λd. For the local folding technique, the transformation
is similar but, instead of being applied at the circuit level, it is applied at the gate level as follows:

G → GG†G, (4)

where G represents an individual gate of the input circuit U . Let t be the number of noisy gates in the input circuit
U and let k be the integer part of t(λ − 1)/2. In random local folding, the transformation in Eq. (4) is applied
to k noisy gates sampled at random without replacement from the full set of the t noisy gates in the circuit, such
that the new circuit has ≈ λt noisy gates. More precicely, in this work we assume that the main source of errors
is due to CNOT gates and, therefore, we apply local folding by only sampling from the set of t CNOT gates that
are present in each quantum volume circuit. Moreover, to apply local folding more uniformly along the circuit,
the procedure was repeated 10 times for each noise scale factor λ (each time sampling a new random subset of k
CNOT gates), and the measured expectation values averaged to a single noise-scaled value.

For all the experiments reported in this work, the chosen noise scale factors are λ = {1, 1.2, 1.5, 1.8, 2} (or a
subset of them). These scale factors are quite small compared to those used in the small-size quantum volume
experiments of Ref. [16]. Using small scale factors is a deliberate choice since in this work we consider larger circuits
for which large noise scale factors are not appropriate. Indeed the application of strong noise scaling (e.g. with
λ ≥ 3) would amplify errors too much when applied on a base circuit which is already very noisy.

For storing the circuits at this stage, OpenQASM is used [28]. After the noise scaling process, the circuits are
again transpiled to map them to the correct gateset, but no optimization is applied such that the intended effect
of unitary folding is not cancelled by circuit optimization passes.

2.3 Insertion of dynamical decoupling sequences

Next, dynamical decoupling X-X sequences are inserted into the compiled circuits using the PadDynamicalDecoupling
4 class of the Qiskit [27] library. Dynamical Decoupling is an open loop quantum control error suppression technique
for mitigating decoherence on idle qubits [24, 30–35], which has been shown to help increase measured quantum
volumes in previous experiments [3]. When the dynamical decoupling sequences are inserted into the circuit, the
resulting scheduled circuit (based on the IBM Quantum device gate timings) is scheduled according to the ALAP
(as late as possible) algorithm. This dynamical decoupling step is optional, but the intention is to increase the
measured heavy output probability of the QV circuits (both with and without noise scaling).

Figure 5 shows two examples of ZNE folded QV circuits represented as circuit timelines, with pairs of Pauli
X gates (X-X sequence) dynamical decoupling sequences inserted. Note that the rz gates in Figure 5 are virtual
gates [29], meaning that they are performed at the software level and therefore have an error rate of 0 and a time
cost within the circuit of 0.

3Here and everywhere in this work, we assume λ ≤ 3. More details about how to extend global and local folding for λ > 3 can be
found in Refs. [19, 22].

4https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.PadDynamicalDecoupling.html
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0 9133 18265 27398 36531 45663
System cycle time (dt)
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q21

0 16575 33149 49724 66298 82873
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Figure 5: Three Qiskit [27] timeline diagrams of a single n = 4 Quantum Volume circuit compiled to a subgraph
of a heavy hex graph, specifically qubits 15, 18, 17, 21 of ibm hanoi. Top diagram shows the compiled QV
circuit, with optimizations applied. The middle and bottom circuit diagrams are the same compiled circuit with
a digital ZNE circuit folding scale factor of λ = 2 having been applied. Local CNOT circuit folding is used for
the middle plot, and global circuit folding is used in the bottom plot. Digital dynamical decoupling sequences of
X-X Pauli gates are inserted into all of the the circuits, and the all circuits are scheduled using the ALAP circuit
scheduler. The RZ gates are virtual gates [29], and are represented here by circular black arrow markers. The X

gates are shown as green vertical lines, which are very thin because the single qubit gate operations take a small
amount of time. Similarly, the short duration single qubit SX gate is represented as vertical red lines. The CX (e.g.
CNOT) gates are drawn as vertical blue connections between adjacent qubits in the hardware graph. The dark
grey segments at the end of each qubit line denote the measurement of the 4 qubits. The uncompiled QV circuit
contained 24 CX gates, which was then turned into 18 CX gates when optimized using the Qiskit transpiler and
adapted to the heavy hex graph structure (shown in the top circuit diagram). ZNE global folding (bottom) with
λ = 2 generated a circuit invariant with 36 CX gates, and local random folding (middle) with λ = 2 generated a
circuit with 42 CX gates.
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2.4 Execution on hardware and extrapolation to the zero-noise limit

Once the circuits have been compiled, all of the circuits are submitted to the target backend. Importantly, the
number of shots used for the different types of circuits differs—in particular the aim is for the original unscaled
(i.e. λ = 1) QV circuits to sample more shots compared to the folded QV circuits. The original QV circuits are
all executed with 10000 shots per circuit. The global folded QV circuits are executed with 1000 shots per (folded)
circuit, and the local randomly folded QV circuits are executed with 100 shots per (folded) circuit. Finally, the
quantum circuit measurements are converted into heavy output proportion (HOP) statistics, and the zero noise
extrapolations can be performed on measured HOP data for each individual circuit using Mitiq [22].

In particular, linear [19, 21, 22]extrapolation is used, since Richardson extrapolation can lead to extrapolation
instability for a limited number of shots. For consistency, and in order to obtain a very robust sampleset, 1000
random QV circuits are generated and executed for each target backend (and for each target qubit subset of the
chip). This number of shots ensures that the resulting extrapolations, no matter what specific scale factors are
used, will utilize fewer shots compared to the original (unmodified) QV circuit which is always sampled with 10000
shots.

In order to execute the ZNE QV circuits on the target IBM Quantum devices, the circuits were split into groups
of 250 circuits to be executed together as jobs since the maximum number of circuits per job on the target IBM
Quantum devices was 300. This means there were 4 jobs executed for each group of 1000 QV circuits, which was
then repeated for each of the circuit folding scale factors and the two circuit folding methods. This is important
because it is possible for the results to not have been executed together sequentially, and therefore there can be error
drift. Additionally, when there are backend device errors and the jobs need to be re-executed, those results would
be executed at a different time as well. The results are then post-processed using linear extrapolation. The ZNE
QV results shown in Section 3 are presented as cumulative heavy output probability plots, which are a convenient
method of visually representing quantum volume results [3, 4].
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IBMQ device: ibmq_toronto
circuit folding method: fold_global
qubits: (0, 1, 2, 3, 4, 7)
extrapolation method: linear
scale_factors: [1, 1.2]

Ideal mean HOP
Unmitigated_mean
Individual circuit HOP
ZNE individual circuit HOP

ZNE HOP mean
ZNE mean - 2 
2/3 (QV threshold)
0.5

Figure 6: Cumulative HOP plot showing ibmq toronto passing the effective quantum volume of n = 6 for ZNE
using unitary circuit folding. The HOP metric is defined to be within [0, 1], note therefore that any ZNE HOP
points above 1 correspond to non-physical extrapolations due to shot noise.

3 Results

The effective quantum volume results are reported in the form of cumulative heavy output probability plots. The 2σ
bound on the error mitigated HOP values are measured using bootstrapped re-sampling [5, 16] on the (cumulative)
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IBMQ device: ibm_geneva
circuit folding method: fold_gates_at_random
qubits: (5, 8, 11, 13, 14, 16)
extrapolation method: linear
scale_factors: [1, 1.5]
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Figure 7: Cumulative HOP plot showing ibm geneva passing the effective quantum volume of n = 6 for ZNE using
local random circuit folding.
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IBMQ device: ibm_auckland
circuit folding method: fold_global
qubits: (1, 2, 4, 6, 7, 10, 12)
extrapolation method: linear
scale_factors: [1, 1.2]

Ideal mean HOP
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Individual circuit HOP
ZNE individual circuit HOP
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Figure 8: Cumulative HOP plot showing ibm auckland passing the effective quantum volume of n = 7 for ZNE
using global circuit folding.

ZNE HOP points. The re-sampling is performed 100 times for the full HOP vector size (of 1000), with replacement,
and then the standard deviation σ is computed. Figures 6 and 7 show ibmq toronto and ibm geneva both passing
an effective quantum volume of n = 6, respectively. Figures 8 and 9 show ibm auckland and ibm hanoi passing an
effective quantum volume of n = 7, respectively. Each of the four figures, show an effective quantum volume test
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circuit folding method: fold_global
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Figure 9: Cumulative HOP plot showing ibm hanoi passing the effective quantum volume of n = 7 for ZNE using
unitary circuit folding.

averaged over 1000 circuits passing the 2
3 threshold. Therefore, each plot show that the effective Quantum Volume

is increased by ZNE beyond the vendor-measured quantum volume, a fact that was never been demonstrated to
date on a NISQ computer [16]. It is important to consider however, that although effective quantum volume is
defined, as was the original Quantum Volume metric [1], as the largest such measurement that can be made on
a device, it is the case that a wide range of QV results can be observed on a fixed NISQ computer [4] depending
on the choice of qubits and error mitigation method. In the interest of examining in what cases we observed
effective quantum volume experiments failing to pass the QV threshold, we report the associated negative results
in Appendices A, C. Moreover, Appendix B briefly gives some additional cumulative ZNE HOP plots in order
to illustrate how similar the two ZNE circuit folding methods are. For all of the experiments we present, linear
extrapolation is used because it gives the lowest extrapolation variability (specifically, extrapolated values that are
more typically consistent with the physical HOP range). The better stability of linear extrapolation compared to
high-order polynomial fittings (e.g. Richardson extrapolation) is a known phenomenon that can be explained in
terms of under-fitting vs over-fitting of the noise scaled expectation values (see Ref. [19] for more details on the
extrapolation error).

Figure 8 shows a single cumulative HOP plot for a case where ibm auckland passes the effective quantum
protocol of size n = 7 when executing on qubits 1, 2, 4, 6, 7, 10, 12. The ZNE protocol in this case used
scale factors of 1 and 1.2, global circuit folding method, and linear extrapolation on the noise-scaled ZNE data
points. Figure 8 shows clearly that the original QV circuits were sampled below 2

3 , but above 0.5, and that the
error mitigated HOP values were measurably above the 2

3 threshold but not above the ideal mean HOP. Figure 8
also shows that some of ZNE HOP points were measured to be above 1, which is possibly due to the relatively small
shot count, and the fractional scale factors that are used resulting in some extrapolation instability. Extrapolation
instability, in particular, extrapolated HOP which is much greater than 1, is seen in Figures 6, 7, 8, and 9.

Figure 10 shows the full distribution of measured ZNE HOP values (specifically the mean ZNE HOP values
across each set of 1000 QV circuits) across all of the experiments that were executed. This distribution of ZNE
HOP values includes the different linear extrapolations for λ = 0 across the possible combinations of the scale
factors that were used between λ = 1 and λ = 1.2, 1.5, 1.8, 2. These distributions are not comprehensive for the
entire hardware graph of the four IBMQ chips, but instead represent only a random subset of the possible hardware
graphs that could be chosen to compile to. As has been observed for Quantum Volume test enumeration [4], Figure
10 shows that on average the performance is worse than the best performance cases. Lastly, note that the best
mean ZNE HOP does not reach above the ideal mean HOP of ≈ 0.85 [1, 7], showing that when this procedure
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is averaged over many instances the quantum error mitigation results in measures that are consistent with the
physical measure of HOP.
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Figure 10: Distribution of all mean λ = 0 Zero Noise Extrapolated HOP values, across all of the different noise
scale extrapolations, for n = 6 (left), run on ibmq toronto and ibm geneva and n = 7 (right) run on ibm hanoi

and ibm auckland. The 2
3 threshold is marked with the vertical dashed black line.

An important aspect of zero noise extrapolation is that statistical noise is increased by the extrapolation process.
For example, if there are too few measurement shots used for computing an expectation value, or if there is an error
rate drift on the quantum computer during the period of time the circuits are executed, the resulting extrapolations
may end up outside the expected physical range. For a noiseless quantum computer, individual circuits may have

a heavy output probability that is slightly larger or smaller than 1+ln(2)
2 ≈ 0.85 [4, 5] (especially if n is small). In

our experiments, we observe that ZNE sometimes amplifies such deviations beyond the theoretical upper bound
and, for a few cases, the extrapolated HOP is even larger than 1. The amplification of statistical fluctuations is a
known aspect of ZNE and is expected for individual circuits due to the very small number of sample (100 shots).
However, at least when using linear fit (more stable with respect to Richardson extrapolation), when averaging
over the 1000 random circuit of the QV protocol, we always obtained a mean HOP within the physical range.

Another important note about ZNE, and specifically ZNE QV, is that if there is no signal for small-scale factors,
and especially, λ = 1 then the extrapolation simply does not work. In the case of Quantum Volume, if the measured
heavy output probabilities across the scale factors are all around 0.5 (meaning the computation has completely
decohered) then the extrapolation cannot work. Furthermore, even if some of the larger scale factors converge to
a HOP of 0.5 then extrapolations based on those results may also end up skewed—this in part motivated the use
of scale factors that were ≤ 2. For this reason, our experiments target several different parts of the chips since the
error rates on each chip can vary significantly [4], in order to attempt to quantify a distribution of the possible ZNE
QV performance on the target QPUs. This concept of applying the same algorithm to an ensemble of different
parts of the quantum computer hardware has been used in other contexts [36].

4 Discussion and Conclusion

We have demonstrated an increase in the measured effective quantum volume over the vendor-benchmarked quan-
tum volume, on four IBM Quantum devices ibm geneva, ibm auckland, ibm hanoi, ibmq toronto. These results
show that error mitigation can be scaled to larger QV circuit sizes than have been previously measured in the
effective quantum volume protocol [16]. We have also shown examples where quantum error mitigation, in partic-
ular ZNE, is unable to extrapolate the computation to the zero noise limit—this occurs when the circuit that is
executed experiences too much decoherence and there is no signal that can be extrapolated. Because the QV ZNE
protocol fails to perform a meaningful zero noise extrapolation when all of the computations have decohered be-
cause of errors in the computation, effective quantum volume serves as a meaningful quantification of how effective
quantum error mitigation can be for near-term quantum processors. In particular, although the effective quantum
volume can be greater than the vendor-measured quantum volume (as has been demonstrated in this paper), there
is a hard limit where the extrapolation will not work (when the mean heavy output probability converges to 0.5).
Therefore, as with the original quantum volume test, effective quantum volume is a difficult test for near-term
quantum processors to pass, and importantly effective quantum volume as a benchmark employs the full stack of
software and computations involved with utilizing quantum error mitigation.
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Probing how other quantum error mitigation techniques, in particular, probabilistic error cancellation (PEC)
[21, 37, 38], perform when applied to effective Quantum Volume is an open question. In general, other quantum
error suppression mechanisms such as Pauli twirling (also known as randomized compiling) [39–42] and variants
of dynamical decoupling should continue to be analyzed for their effectiveness at improving NISQ computation
quality, and therefore also how they impact full stack benchmarks such as Quantum Volume.
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and Qiskit [27] in Python 3.

A ZNE unable to extrapolate if the computation contains too many
errors

Figure 11 shows examples from the set of experiments we executed where the original unmodified QV circuits (e.g.
λ = 1) were sampled with a mean HOP of 0.5. The result of this is that any extrapolation for increased error can
not work. This occurs in general when the computation reaches the maximal amount of noise, or error. This shows
the limits of ZNE, for the specific case of Quantum Volume. In particular, this shows that such near term quantum
error mitigation algorithms require at least some amount of signal to be present in order for the error mitigation
to work.

B Compare global and local circuit folding

Both global and local folding produce the same intended effect, which is to increase the effective noise of a circuit
by intentionally increasing the number of gates. However, the circuit implementations of these two folding methods
are not identical, and can be compiled to devices in different ways. In particular the way the fractional scale factors
are implemented is different for these two methods. Generally, sampling more random instances of locally folded
circuits with fractional scale factors is useful because it can average out biases from increased noise in local parts of
the circuit. With global folding instead the process is deterministic but only folds part of the circuit unitary, which
means the results could have biased noise. Given these differences, a relevant question is whether the two methods
performed similarly in the effective quantum volume experiments considered in this work. Overall, the two methods
did perform comparably. Figure 12 shows some side-by-side comparisons of the measured HOP extrapolation plots
in order to show that both methods did perform similarly. Specifically, these plots show two instances of identical
parameter settings (same IBM Quantum device, qubits, layout, scale factors, and extrapolation algorithm), where
only the choice of circuit folding method was changed. Although it is not possible to perfectly control the time
within which these circuits were executed, these circuits were queued in sequence with each other, which means
that time was controlled for as well as much as it can be on an IBM Quantum system.
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Figure 11: Four example cumulative HOP plots which show instances where the total errors encountered within
the circuits caused the mean HOP to converge to 0.5, which is the HOP that is expected when all fidelity in the
computation is lost. This high noise convergence to 0.5 HOP has been observed before [4], but here it is notable
because it means that any extrapolation of expectation values would not work, since the extrapolations would be
for a flat expectation value landscape (of 0.5 on average). Experiment parameters are shown in the plot titles.

C ZNE QV not passing threshold

Like what was observed on numerous IBM Quantum devices in ref. [4], for this set of ZNE QV tests evaluated
in this paper, many of the settings (in particular, the parts of the chip that were executed on) had too high error
rates, even with ZNE being able to extrapolate meaningful expectation values that had a gradient (as opposed to
the examples in Figure 11) often times the effective quantum volume test would fail. Examples of this are shown
in Figure 13 in the form of cumulative HOP plots. Note that in the top right hand plot the threshold is only
barely not passed, whereas in the other plots the mean ZNE HOP distribution is more clearly not passed. This
shows that, as with previous Quantum Volume studies that sample a range of device settings and qubits [4], there
is a distribution of performances, and the utilization of ZNE does not uniformly automatically make the measured
results better. Near term quantum error mitigation does require tuning the of the experimental settings, and is
still dependent on what errors are encountered on the device.
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Figure 12: Comparison of global folding (right column) and local random circuit folding (left column) HOP results
with all other parameters being held constant. Experiment parameters are shown in the plot titles.
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Figure 13: Example plots of the four IBM Quantum devices failing to pass the 2
3 threshold with high confidence for

the ZNE QV protocol under various ZNE settings and IBM Quantum compilation qubit subgraphs. Experiment
parameters are shown in the plot titles.
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