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Abstract

The problem of quantum state classification asks how accurately one can identify an un-
known quantum state that is promised to be drawn from a known set of pure states. In this
work, we introduce the notion of k-learnability, which captures the ability to identify the correct
state using at most k guesses, with zero error. We show that deciding whether a given family of
states is k-learnable can be solved via semidefinite programming. When there are n states, we
present polynomial-time (in n) algorithms for determining k-learnability for two cases: when
k is a fixed constant or the dimension of the states is a fixed constant. When both k and the
dimension of the states are part of the input, we prove that there exist succinct certificates
placing the problem in NP, and we establish NP-hardness by a reduction from the classical
k-clique problem. Together, our findings delineate the boundary between efficiently solvable
and intractable instances of quantum state classification in the perfect (zero-error) regime.

1 Introduction

Quantum state distinguishability is a cornerstone problem in quantum information theory [1-9]
that addresses a fundamental question: Given a quantum system prepared in one of several known
states, can we identify the given state? This problem has deep connections to quantum communica-
tion, cryptography, and computational complexity [10-13].

In the setting of quantum state exclusion [14], the goal is to determine which state the system
is not in, rather than which state it is. Perfect quantum state exclusion (also called antidistin-
guishability [15-20]) of a state from a known set is possible when there exists a measurement
that perfectly rules out a state that was sent. This exclusion perspective has proven fruitful for
understanding nonlocal properties of quantum states [21-24] and has applications in quantum
cryptographic protocols [25]. One noteworthy point (that we leverage later in this paper) is that
the notion of antidistinguishability and the property of k-incoherence of a matrix [26] are intricately
linked [20].

This work explores intermediate scenarios between perfect distinguishability and perfect ex-
clusion. Rather than asking whether we can identify or rule out states with certainty, we ask: How
many guesses are needed to guarantee correct identification? This perspective naturally leads to a new
task which we call k-learnability: an ensemble of states is k-learnable if there exists a measurement

“Department of Mathematics & Computer Science, Mount Allison University.
njohnston@mta.ca, https://njohnston.ca/
tDepartment of Computer Science and Software Engineering, Concordia University.
benjamin.lovitz@concordia.ca, https://www.benjaminlovitz.com/
tUnitary Foundation.
vincent@unitary.foundation, https://vprusso.github.io/
§Department of Computer Science, Virginia Tech.
sikora@vt.edu, https://sites.google.com/site/jamiesikora/


https://njohnston.ca/
https://www.benjaminlovitz.com/
https://vprusso.github.io/
https://sites.google.com/site/jamiesikora/

that, upon obtaining an outcome, allows us to narrow down the identity of the unknown state to
at most k possibilities, with the guarantee that one of these k guesses is correct.

The k-learnability problem has natural connections to quantum machine learning [27, 28],
quantum learning theory [29,30], and tomography [31,32]. In these fields, the problem of learn-
ing quantum states from measurement data has received considerable attention, with complex-
ity measures often tied to the number of measurements or samples required. The k-learnability
framework reinterprets learnability: it measures the number of distinct candidate states that must
be considered, rather than the number of identical samples required.

1.1 Perfectly distinguishability and learning width

An indexed list of (pure) states {|¢1),...,|Pn)} is called perfectly distinguishable if there exists a
POVM that, when applied to an unknown state drawn from the set, always perfectly guesses the
index (that is, without error). It is well-known that a set of quantum states is perfectly distin-
guishable if and only if the states are pairwise orthogonal. However, if we relax this definition,
one can, perhaps surprisingly, learn other aspects of this set without error, even when the states
have non-trivial overlap.

The task of perfect state exclusion (also called antidistinguishability) asks when it is possible
to perfectly exclude an index. A popular example where this can be achieved is the so-called trine
states [33,34]
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Optimal bounds for this task are known [14,20] noting that one need not require pairwise orthog-
onality for a set of states to be antidistinguishable.

To illustrate k-learnability, consider the following generalization of the trine states to four states
in three dimensions, called the tetrahedral states:
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These states are 2-learnable: upon receiving one of them, one can always guess two states from
which it was selected without error. This can be accomplished using the POVM M; ; = 3|¢; ;) (i ],
where
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We now formally define the notion of k-learnability.
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Definition 1. Let k be a positive integer. An indexed list of (possibly sub-normalized) pure quantum states
{lg1), ..., |$n)} C C¥ is k-learnable if there exists a POVM

(Ms:SC{1,...,n},|S| =k, (4)

such that (;|Ms|y;) = 0 whenever i ¢ S. The learning width of the list is the smallest k such that it is
k-learnable.



Remark 2. We note that later, when we discuss the decision problem of determining the k-learnability
of pure states, we need to define approximate k-learnability. For this, it is convenient to define the k-
learnability of subnormalized pure states. Notice that as long as the states have positive norm, the task
of determining if they are k-learnable is the same; it is only a matter of finding a POVM with the correct
indices and orthogonality conditions.

Note that 1-learnability is equivalent to perfect distinguishability and (n — 1)-learnability is
equivalent to antidistinguishability. A set has learning width 1 if and only if the states are pair-
wise orthogonal. Every set has learning width at most 7, trivially, and a set is antidistinguishable
if and only if it has learning width at most n — 1. The trine states and the tetrahedral states both
have learning width 2 since they are 2-learnable but not 1-learnable.

We can trivially construct indexed lists of pure states that are k-learnable for any n > k in the
following way. Consider the indexed list of states

{0),10),..,10),|1),11),..., 1), 12),12),...}- )
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Measuring in the computational basis will reveal which k-subset the states were in. While this
example is rather straightforward, we note that it also illustrates why we use the term indexed
list of states instead of set, as we are guessing the index, not the state. Indeed, with the states in
Equation (5), one can always guess the state, but not necessarily the index.

1.2 Owur results

We establish both positive and negative results concerning the computational complexity of de-
ciding k-learnability. Specifically, we show that when certain parameters are fixed, the problem
admits efficient algorithms: the k-learnability of a set of n states can be decided in poly(n) time
when either the number of guesses k is fixed (Theorem 3) or when the dimension of the underlying
Hilbert space is fixed (Theorem 4). In these regimes, the structure of the problem allows reduc-
tions to semidefinite programs of bounded size, which can be solved efficiently using standard
approximation techniques. In contrast, when both k and the dimension are treated as part of the
input, the problem becomes substantially harder: we prove that it is NP-complete by establishing
membership in NP and constructing a reduction from the classical k-clique problem (Theorem 5,
Theorem 6). Together, these results delineate the boundary between the tractable and intractable
instances of quantum state classification. In what follows, we state these results informally and
provide intuition for the underlying proofs.

The starting point for our proofs is the observation that an indexed list of states { |¢1), ..., |¢u) }
is k-learnable if and only if its associated Gram matrix G;; = (i;|¢;) possesses a particular struc-
tural property called k-incoherence [26]. Intuitively, this means that the Gram matrix can be ex-
pressed as a convex combination of outer products of vectors that are supported on at most k
coordinates. In the following sections (see Section 2.1), we formalize this correspondence and
show how it serves as the foundation for both our algorithmic and hardness results.

Theorem 3 (Informal, see Section 6). Given an indexed list of (possibly sub-normalized) pure quantum
states {|¢1), ..., |Pu)} C C", there exists a polynomial-time algorithm (in n) to test if the list is k-learnable
when k is a fixed constant.

The proof proceeds by stating the problem as a semidefinite program in which there are
polynomially-bounded variable size and also polynomially-bounded number of constraints. Then



using standard algorithms for efficiently approximating semidefinite programs, e.g., the Ellipsoid
Method [35], this gives the result.
The next theorem gives another regime where we can efficiently test k-learnability.

Theorem 4 (Informal, see Corollary 29). Given an indexed list of (possibly sub-normalized) pure quan-
tum states {|¥1),...,|wn)} C C4, there exists a polynomial-time algorithm to test if the list is k-learnable
when k is now part of the input, but the dimension d is fixed.

Translating to k-incoherence, this result says that it can be determined in polynomial time
whether the (constant) rank 4 Gram matrix is k-incoherent. This is clear when d = 1 by extremal-
ity of pure states. In general, one can formulate the question of k-incoherence as a semidefinite
program in ~ (}) matrix variables, which could be exponential in 1, e.g., if k = /2. The crux of
the proof is the observation that for any constant rank, one can efficiently discard all but poly(n)
of these matrix variables.

When the number of allowed guesses k is treated as part of the input, and the Hilbert space di-
mension is also allowed to scale with the problem size, the situation changes dramatically. In this
more general setting, the combinatorial structure of the k-learnability condition becomes signifi-
cantly richer, and the semidefinite formulations that are efficient in the fixed-parameter cases no
longer suffice to yield a polynomial-time algorithm. Intuitively, as both k and the dimension grow,
the space of possible candidate decompositions of the Gram matrix expands exponentially, mak-
ing it (seemingly) computationally infeasible to solve via convex optimization. In fact, we show
that the problem is unlikely to be tractable by showing that is it NP-complete. This is established
through two complementary results, one demonstrating that k-learnability lies in NP via succinct
proofs, and another proving NP-hardness by reduction from the classical k-clique problem. To-
gether, these theorems provide a tight characterization of the problem’s computational difficulty
in the general case.

Theorem 5 (Informal, see Section 5). The decision variant of k-learnability is in NP.

We introduce the decision variant of the problem in Section 3.

Notice that a proof of k-learnability could be to simply non-deterministically guess the POVM
operators in the learning POVM. However, there are (}) such operators, which is exponentially
large when k ~ n/2 (as seen by Stirling’s approximation, for example), thus a different method is
required. To do this, we reformulate the problem in terms of k-incoherence, and use the geometry
of that set along with Carathéodory’s theorem. This shows the existence of succinct proofs.

Theorem 6 (Informal, see Theorem 21). The decision variant of k-learnability is NP-hard.

We prove this by a series of reductions. First, we prove a formal equivalence to the decision
variant of k-incoherence (see Theorem 18). We then prove a reduction from optimization over
k-incoherent matrices, and finally a reduction from this optimization problem to the k-CLIQUE
problem for graphs, which is NP-hard.

Author note. Theorem 6 was also obtained independently and concurrently in [36]. We note that
their work focused on k-incoherence, and they did not observe the equivalence to state classifica-
tion proven in the present work.

1.3 Structure of the paper

In the next section, we establish a fundamental connection between the k-learnability of quan-

tum states and the notion of k-incoherence of their Gram matrix. This provides the analytical
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foundation for studying the classification problem. Section 3 formalizes both the decision and
optimization variants of learnability by framing them as weak membership problems over a suit-
ably defined convex set. We also introduce the weak optimization version of this problem and,
in Section 4, present rigorous proofs showing that it can be used to solve the k-clique problem.
The decision problem is shown to lie in NP in Section 5, through an analysis of the geometry of
the set of k-incoherent matrices. Efficient algorithms for several special cases are then discussed
in Section 6 and Section 7. Finally, we provide links to open-source software that implements the
methods developed in this work.

2 How to tell if a set of states is k-learnable?

The main focus of this work is to study when a given set of states is k-learnable. We address this
from both an analytical and computational complexity point of view.

To start, we model this as a semidefinite program (SDP). Suppose we are given an indexed list
of states {|¢1), ..., |¢,)} € C?and a POVM {Ms : S C {1,...,n},|S| = k} which is intended to
classify a given state into a subset of size k. Then, the average error this POVM makes is equal to
the optimal objective function value of the following SDP

)1y
min ¢ =) (4] ( ). Ms> ) : Ms € Pos(C?), Y. Ms=1I ©)
= S:i¢s SC{L,...n}

|S|=k

where we denote the set of n x 1 positive semidefinite (resp. Hermitian) matrices as Pos(C") (resp.
Herm(C")). (Note that the minimum is attained since we are optimizing a continuous function
over a compact set.) Thus, to determine if a list is k-learnable, one needs only to determine if the
optimal value of the above SDP is 0 or not. However, special care must be taken when posing this
question in the context of finite-precision algorithms.

When one examines the SDP above, there are a few things that are noteworthy when consid-
ering how difficult it is to solve. Often, one can efficiently approximate semidefinite programs
with respect to their variable size and number of constraints, but the above SDP has (}) matrix
variables, each of size n x n, which could be exponential when, e.g., k ~ 1n/2, as seen by Stirling’s
approximation. This suggests that this semidefinite program could be hard to approximate with
respect to n and k in general.

2.1 Gram matrices and factor width

It turns out that determining whether states are k-learnable reduces to asking whether certain
matrices can be decomposed as sums of positive semidefinite matrices with restricted support. To
see this, consider the following SDP

min {fm Y Wli): Ws € Pos(C"), Y Ws= 1G} @)

i=1 S¢S SC{L,..n},|S|=k n

where G is the Gram matrix, i.e., G;; = (¢;[¢;).
This SDP ends up being useful to state the decision problem of classification, as seen in the
following Lemma (proved in Appendix A).



Lemma 7. Let k be a positive integer and let {|(1), ..., |pn)} C C¥ be an indexed list of (possibly sub-
normalized) pure quantum states. Then SDP (6) and SDP (7) have the same optimal value.

Note that we are ultimately interested in whether either SDP has an optimal value 0. In this
case, we have (i|Ws|i) = 0 for each i and each S such thati ¢ S. For such a pair (7, S), this means
that the (i, 7)-th diagonal entry of Ws equals 0 and since Ws is positive semidefinite, the entire i-th
row and column must be 0. Since this holds for all i ¢ S, there must be n — k rows and columns
that are all 0. This aligns exactly with the notion of generalized incoherences, discussed next.

In the theory of quantum resources, k-incoherence [26,37-39] plays the role of quantifying how
much superposition is present in a (mixed) quantum state. This particular interpretation of it is
not relevant for our purposes, so we just recall its mathematical definition.

Definition 8. Let k be a positive integer. A positive semidefinite matrix X is called k-incoherent if there
exists a positive integer m and a set of vectors v; with the property that each v; has at most k non-zero
entries, such that
m
X = Zviv;" . (8)
i=1
With this defined, we can now state the following, which is a generalization of a result from [20]
from n — 1 to general k and defer the proof to Appendix B.

Lemma 9. Let k be a positive integer. An indexed list of (possibly sub-normalized) pure quantum states
{lg1), ..., |$n)} C C is k-learnable if and only if its Gram matrix is k-incoherent.

Another closely related definition is that of factor width [40-42], below.

Definition 10. Let k be a positive integer. The factor width of a positive semidefinite matrix X is the
smallest k such that it is k-incoherent.

Equipped with this definition, we have the immediate corollary.

Corollary 11. Let k be a positive integer. An indexed list of (possibly subnormalized) pure quantum states
{l1), ..., [n)} C C* has learning width equal to the factor width of its Gram matrix.

With this direct relationship between the learning width of pure states and the factor width
of its Gram matrix, we now define the decision and optimization versions of these problems, and
show that they are polynomial-time reducible to each other.

3 Weak membership and optimization problems

In order to discuss the computational complexity of k-incoherence, we consider it as a weak mem-
bership problem. We adopt the notation and definitions from [43] and apply it to the set of trace-
bounded k-incoherent matrices, denoted by

Iy = {X € Herm(C") : Tr(X) <1, X is k-incoherent}. )

This is clearly a closed, convex set, and in Lemma 31 we prove that it has non-empty interior.
We define the following three sets of Hermitian matrices that are relevant to weak membership
of sets with respect to the Frobenius norm defined as || A||r = /Tr(A*A).

B(X,8) = {Y : [X— Y] <6} (10)
S(Z¢,0) :=={X : 3Y € I} suchthat || X —Y]|r <} (11)
S(Z},—6) :={X : B(X,9) CI}'} (12)



The set (10) is the ball centered at X of radius J, the set (11) is a J-outer approximation of the
set Z;, and the set (12) is a J-inner approximation of the set Z;'. Decision problems are typically
formulated relative to these sets in order to avoid spurious computational difficulty associated
with points close to the boundary.

We can now define the weak membership problem.

Definition 12 (WeakMEM(K, 0)). The weak membership problem over a set K is as follows. Given a
Hermitian matrix X and a real parameter 6 > 0, decide between the following two cases:

* Yes case: X € S(K, —9);
e No case: X € 5(K,9).

From this, we can define our first decision problem.

Definition 13 (FACTORWIDTH). Given a positive integer k, X € Herm(C"), and real parameter 5 > 0,
solve the weak membership problem WeakMEM(Z}, 5).

Before defining the weak membership problem for k-learnability, we take a closer look at the
possible Gram matrices arising from a list of pure states. Consider the list {|i1), ..., |¢,)} and its
Gram matrix G;; = (4;|¢;). For a normalized state, the corresponding diagonal entry is 1, and for
subnormalized states it is strictly less than 1. We also note that Gram matrices are always positive
semidefinite, and thus %G is a trace-bounded positive semidefinite matrix. From Lemma 9, we
know thus have {|y1),..., [{)} is k-learnable if and only if 1G € Z7".

We thus arrive at the following membership problem for learning width.

Definition 14 (LEARNINGWIDTH). Given k be a positive integer, an indexed list of (possibly subnormal-
ized) pure quantum states {|¢n),...,|Pn)} C C", and a real parameter & > 0, solve the FACTORWIDTH
problem for its normalized Gram matrix %G.

Now that we have defined these two decision problems, we can state an immediate corollary.
Corollary 15. LEARNINGWIDTH and FACTORWIDTH are polynomial-time reducible to each other.

The proof follows since if given the states, one can compute the Gram matrix to precision &
and, conversely, if given a trace-bounded positive semidefinite matrix X, one can compute vectors
{v1,..., 04} such that X;; = vjv; via the (efficient) Cholesky decomposition algorithm. In other
words, there is a polynomial-time algorithm to map trace-bounded positive semidefinite operators
to an indexed list if subnormalized pure quantum states, and vice versa.

We now define the optimization versions of the preceding decision problems.

Definition 16 (MINFACTORWIDTH). Given a positive semidefinite matrix X € Pos(C") of trace < 1,
find the smallest k such that (k, X) is a YES instance to FACTORWIDTH.

Definition 17 (MINLEARNINGWIDTH). Given an indexed list of (possibly subnormalized) pure quan-
tum states {|i1), ..., |¢n)} C C", find the smallest k such that (k,{|{1), ..., |¥n)}) is a YES instance to
LEARNINGWIDTH.

By standard techniques, e.g., binary search, we have that the decision problem FACTORWIDTH
and its optimization variant MINFACTORWIDTH are polynomial-time reducible to each other.
Similarly, LEARNINGWIDTH and MINLEARNINGWIDTH are polynomial-time reducible to each
other [44]. Combined with Corollary 15, we obtain the following.



Theorem 18. The following problems are all polynomial-time reducible to each other:
e LEARNINGWIDTH;
e MINLEARNINGWIDTH;
e FACTORWIDTH;
¢ MINFACTORWIDTH.
To show that LEARNINGWIDTH is NP-hard, and thus they all are, we examine the (weak)

optimization over matrices with factor width at most k, next.

3.1 Weak optimization problems

In order to prove NP-hardness of testing weak membership in 7', we will use a reduction from
weak optimization over I}, which we now define, following [43].

Definition 19 (WeakOPT (K, 6)). The weak optimization problem over a set K is as follows. Given a
Hermitian matrix C with ||C||p = 1, and real parameters v and 6 > 0, decide between the following two
cases:

* Yes case: There exists X € S(K, —¢) with (C,X) > v+ 9;
* No case: Forall X € S(K,d), we have (C,X) < v — .

The reduction from weak optimization to weak membership is given as follows.

Fact 20 (Theorem 2.3 in [43]). Given a closed convex set K C Herm(C") satisfying
B(X,r) CK C B(0,R), (13)

for some X € Herm(C"), and real parameters r, R satisfying R/r < poly(n). For any 6 which is inverse-
polynomial in n, there exists &' which is inverse-polynomial in n for which there is a polynomial-time oracle
reduction from WeakOPT (k, ) to WeakMEM (k, &").

For shorthand, we will use poly to denote an arbitrary polynomial function, and write this
statement simply as WeakOPT(K, 1/ poly) reduces to WeakMEM(K, 1/ poly). We prove that this
reduction holds for 7} in the next section.

4 NP-hardness of FACTORWIDTH

In this section we prove that deciding weak membership in FACTORWIDTH is NP-hard.
Theorem 21. WeakMEM(Z}, 1/ poly) is NP-hard.
Our starting point is a reduction from WeakOPT(Z}, 1/ poly).

Lemma 22. There is a polynomial-time oracle reduction from the problem WeakOPT(Z}!, 1/ poly) to the
problem WeakMEM(Z}',1/ poly).



This is a straightforward but slightly tedious application of Fact 20. See Appendix C. Hence, it
suffices to prove NP hardness of WeakOPT(Z}, 1/ poly).
For a Hermitian matrix C € Herm(C"), consider the linear optimization problem

u(k,C) :=max{(C,X): X € Z}'}. (14)

(Note that the maximum is attained since we are optimizing a continuous function over a compact
set.) If a linear optimization problem over a compact set has an optimal solution, then it has an
optimal solution at an extreme point. We now characterize the extreme points of 7.

Lemma 23. The set of extreme points of I}! is
P = {vv" : v has at most k non-zero entries and ||v|, =1} U {0}. (15)

This is proven in Appendix D. We can now succinctly write down the optimal value of the
optimization problem y(k, C). The following corollary is immediate.

Corollary 24. For a Hermitian matrix C € Herm(C"), we have

k,C) = Anax (Cs), 16
u(k,C) scmax (Cs) (16)

where Cg the principal submatrix of C with rows and columns indexed by S, and Amax denotes the maximum
eigenvalue.

In particular, if C is the adjacency matrix of a simple undirected graph G, then Corollary 24
shows that u(k, C) is equal to the maximum eigenvalue of the adjacency matrix of an at-most-
k-node subgraph. It can be shown that the maximum eigenvalue of a k x k adjacency matrix is
maximized when it is a clique. This fact plays a critical component in our NP-hardness proof of
WeakOPT(Z},1/ poly).

Definition 25 (CLIQUE [45]). Given a simple undirected nonempty graph G and a positive integer k,
decide whether G contains a clique of size k.

It is known that CLIQUE is NP-hard [45]. The following proposition shows that CLIQUE re-
duces to WeakOPT(Z}', 1/ poly) for Z}!, completing the proof of Theorem 21.

Proposition 26. Let n > k > 2 be integers, let C be the adjacency matrix of a simple nonempty undirected
graph G on n vertices with e edges, and let C' = \/%C be the normalization in Frobenius norm. Then there

exist functions y = y(e,k,n) € Rand § = 1/poly(n) for which
* u(k,C") > v+ if G contains a k-clique.
* u(k,C") < —6if Gdoes not contain a k-clique.

See Appendix E for the proof. The key idea is to show that y(k,C) = k — 1 if G contains a

k-clique, and p(k,C) <k—1— m if G does not contain a k-clique.



5 Succinct proofs of FACTORWIDTH

In this section, we show that weak membership is in NP, i.e., WeakMEM(Z},1/ poly) € NP, by
showing how to find succinct proofs. For this discussion, it helps to recall the definition of Z}:

I} = {X : X =) v}, where each v; has at most k non-zero entries, Tr(X) < 1}. (17)

1

A first thought to prove that X € Z is to simply provide all of the v; vectors and check the
conditions above. However, there are an exponential number of these vectors (at least (})), making
this proof too long (it must be polynomial in size).

The trick to reducing the dimension is notice that Herm(C") is a vector space of dimension
n2, so Carathéodory’s theorem (see, e.g., [1, Theorem 1.9]) tells us that any member of Z;' can be
written as a convex combination of n2 + 1, or fewer, extreme points of that convex set. Since we
have already characterized the extreme points in Lemma 23, we know that can write any X € 7}
as

X=) v} (18)

where v; has at most k non-zero entries. (We absorbed the convex combination scalars into the
definitions of v;.) Thus, a short proof of membership in Z; simply provides the v; matrices above,
checking that they have the proper support, Equation (18), and its trace.

We remark that even though this proof is succinct, this does not imply it is easy to find. Indeed,
when optimizing or testing membership of this set, we do not know which polynomially many of
the exponentially many v;s are the ones we can use.

6 Polynomial-time algorithm for FACTORWIDTH for constant k

Our approach to efficiently test whether an indexed list of (possibly subnormalized) pure quan-
tum states {|41),..., |{p,) } is k-learnable is to solve the weak membership problem over 7} of its
(scaled) Gram matrix %G.

Before continuing, we prove a lemma to bound the Frobenius norm of any matrix we are
considering to be in S(Z}, 9).

Lemma 27. Given X and ¢, if | X||r > 1+ 0, then X & S(Z},9).
Proof. By the reverse triangle inequality, we have

IX =Y = [IX][r = [[Y][F >4 (19)
forany Y € Z}!. O

Therefore, we have a two-step algorithm. First, check if | X|[f > 2+ 6. If so, return “No”,
X € S(Z},9). Otherwise, solve an SDP which we describe below. Given X, the matrix we wish to
test Z;' membership of, one can solve the following semidefinite program

a =min{||X - Y||}:Y €T/} (20)

to within precision 52/3. After doing this, it is clear whether there exists Y € Z}! é-close to X, and
thus to respond with “Yes” or “No”.

10



Before continuing, we present the well-known semidefinite programming formulation of the
Frobenius norm, for completeness.
Given X (not necessarily square), consider the block matrix

I X
m=(x. 7). e
Then by looking at Schur complements, we have M positive semidefinite if and only if Z — X*X
is positive semidefinite. Thus, minimizing the trace of Z yields Tr(X*X) = || X||2.

Thus, we can write SDP (20) as the SDP below.
a:min{Tr(Z) : <Y£X YEX)ZO,YGI}S} (22)

I Y—X)

:min{Tr(Z):<Y_X S0 )z0 % WSZY,WS20,(i]W5\i>:O,Vi¢S,Tr(Y)gl}.

S:|S|=k
(23)

It is helpful to bound the trace of Z without affecting the value of « (so it does not cut off any
near optimal solutions). We know that in any optimal solution we have

Tr(Z) = |X - Y| < X[} < (6+2)% (24)
where the first inequality holds since Y = 0 is a feasible solution.

Thus, the SDP we actually solve takes the form

o= min{Tr(Z) : (yix YEX) >0, ¥ Ws=Y,Ws>0,(ilWsli) =0,¥i ¢S, (25
S:|S|=k

Tr(Y) < 1,Tr(Z) < (6+2)%}. (26)
Assuming we can write the SDP in standard form
a =sup{(A,X) : ®(X)=B,X >0}, (27)

then one can approximate « to € > 0 precision (additive error) in time poly(a, b,1og(R),log(1/€), c)
using the Ellipsoid Algorithm [35], where:

e Xisaxa;
e Bisb x b;
* ||X|l2 < R for all feasible X (and there exists feasible X);

e ¢ is the maximum bit-length of the entries in A, B, and J(®), where ] is the Choi representa-
tion of ®.

To modify our SDP, we first write the linear operator

‘I’1(Y,Z,W):<8 ;)—w and B1:<;{I é() (28)

11



where Y, Z, W are all positive semidefinite. Then ¥»(Y, Z, W) = B; models the

I Y- X
<Y—X z >ZO (29)
constraint. If we define
(x)
F2(Y, Wi,..., Wey) =) W; =Y and By =0 (30)
i=1

this models the Y = }s. ;5 Ws constraint. If we define

Ds(Ws) = ) (i|Ws|i) and Bs=0 (31)
igs
this models the (i|Ws|i) = 0 constraints. If we define
¥5(Y,t) = (L,Y)+t and B;=1 (32)
where t > 0 this models the Tr(Y) < 1 constraint. If we define
Y4(Z,s) =(I,Z) +s and By= (6+2)° (33)

for s > 0 this models the Tr(Z) < (6 + 2)? constraint.

Therefore, we have the variables (Y, Z, W, Wy, ..., W(Z)’ t,s), all positive semidefinite. Also, we
have the constants By, By, Bs, B4, By, ..., B (- By defining a single SDP variable as

n
k

YOZOWOW GtOsOW & © Wy (34)
and a single constant matrix as
Bi®B,®Bs @By @B @@ By (35)
and a single linear map Y as
‘I’(Y,Z,W,Wl,...,W(z),t,s) =1NohotoY,000--- 0P (36)
we can write the affine SDP constraints as ¥ (X) = B. Lastly, define A as
00IC0D0®0S - @080 (37)

(where the dimensions of the 0 matrices align with Equation (34)) finishes putting the SDP in
standard form.

First notice that the bit-length of the data of the standard form SDP is the same as X and 4.

It is now straightforward to check that we can take

* R = poly(n,é) = poly(n) when § = 1/poly(n).

* g = poly(n) when k is constant.

* b = poly(n).

* e = 6%/3 (this suffices to tell if there isa Y € Z}" such that || X — Y||r < 6 or not).

Thus, the SDP runs in time poly(7n) and the bit-length of X and ¢.
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7 Polynomial-time algorithm for FACTORWIDTH when the rank is con-
stant

In this section, we give a poly(n)-time algorithm for computing the factor width of a matrix M €
Pos(C") when the rank of M is fixed (and k is arbitrary). Note that this fact is trivial in the rank 1
case (and is exploited considerably in the rank 1 case in [36]).

Theorem 28. Let M € Pos(C") has rank r, and k is a positive integer. Then there exists a positive integer
m € O(n") and subspaces Ty, ..., T,, € C" (which can be found in poly(n) time) with the property that
M is k-incoherent if and only if there exist matrices My, . .., My, € Pos(C") for which

M =

]

m
=1

where, forall j € {1,2,...,m}, I1; is the orthogonal projection onto T;.

We note that determining the existence of Mj, ..., M;, can be solved by semidefinite program-
ming, and approximated in a similar way as was done in Section 6.

Before proving this theorem, we note that it immediately implies a poly(n)-time algorithm for
determining k-learnability of n pure states in any constant dimension d. This follows from the fact
that the rank of a Gram matrix is exactly the minimum dimension of states |¢1), .. ., |{,) with that
Gram matrix.

Corollary 29. Suppose S = {|{1),...,|¢n)} C C% and d is constant. Then the learning width of S can
be determined in poly(n) time by solving a polynomial number of polynomial-sized linear systems, and a
polynomial-sized semidefinite program.

Now we prove Theorem 28.

Proof of Theorem 28. Let S := range(M) C C", so dim(S) = r. Foreach j € {1,2,...,n}, consider
the subspace
Sj:=Sn{veC":v(j) =0} (39)

Similarly, for an indexset ] C {1,2,...,n}, define

S]::ﬂsj:Sﬁ{veC”:v(]’):OVje]}. (40)
j€]
Let {T1, Ty, ..., T} be the set of such subspaces corresponding to all ] C {1,2,...,n} with |J| =
n — k. Our first goal is to show that m < Y7 () € O(n") and that these subspaces can be found
in polynomial time.
To this end, we proceed recursively. Start with the set Ry := {S}. Then, for each integer
j€A{1,2,...,n—k}, we define

Ri:={RN{veC":0(i)=0}:ReR; 1, ic{12...,n}} (41)

Foreach R € Rj_jandi € {1,2,...,n}, we have either RN {v € C" : v(i) = 0} = Rordim(RN
{veC":v(i) =0}) = dim(R) — 1. Since dim(S) = r, this recursive construction cannot decrease
the dimension of S more than r times, so the total number of distinct subspaces in R; can never
exceed er-:o (';) Since R, = {T1, Ty, ..., T}, the fact that m < Z]r-zo (']1) follows.
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To see that (orthonormal bases of) T, T, . .., T, can be computed in poly(n) time, simply no-
tice that (as noted earlier) each R;_; contains at most 2]7-:0 (']1) subspaces, so each R; can be con-
structed by computing orthonormal bases for at most n};_ (’;) subspaces. Since the recursion
runs for n — k steps, this amounts to computing at most (n —k)n Y_;_ ( ) < n? Yi-o ( ) subspaces,
which is polynomial in 7.

Our next goal is to show that M is k-incoherent if and only if there exist matrices M, ..., M,, €
Pos(C") for which (38) holds. To this end, note that if M can be written in this form then it has
factor width at most k, since every vector in T] has at most k non-zero entries, so each Mj =
IT;M;1I1; equals 0 outside of a single k x k principal submatrix. Conversely, if M cannot be written
in this form then, since U}":l T] contains every vector v € S with at most k non-zero entries, M
must have factor width strictly larger than k. O

Example 30. To illustrate how Theorem 28 works, suppose we want to determine the factor width of the
rank-3 matrix

1 -1
0 1
2 -1
-1 2

1
2
; 42)
1

We start by finding a basis for S := range(M), which can be done by picking a linearly independent set of
r = 3 columns of M: S = span{(2,1,1,—-1),(1,2,0,1),(1,0,2,—1)}. Then Ry = {S} and we proceed
recursively as in the proof of Theorem 28:
Ry ={S1,52,53,53}, where Sy =span{(0,1,—1,1),(0,1,-3,1)},
Sy = span{(1, O 2,-1), (3 0 2, 3)}
Sz =span{(1,2,0,1),(3,2,0,—1)}, and
Ss =span{(1,1,1,0),(3,3,1,0) }.
To determine whether or not M is 3-incoherent, we let 11y, 1, I3, and 114 be the orthogonal projections

onto S1, Sa, S3, and Sy, respectively. We then use semidefinite programming to determine whether or not
there exist matrices My, M, M3, My € Pos(C*) for which

M= M+ My + M3+ My, and M;=ILMII; forall je{1,2,3,4}. (43)

Indeed, such matrices do exist:

00 0 O 1 00 —1 0000 1110
0 1 -1 1 0 00 O 0000 1110
Mi=1o 211 —1"™M=|0 00 o|"M=|o00 0o/ M~|111 0|
0 1 -1 1 100 1 0000 000 0
(44)

so M is 3-incoherent.
To similarly determine whether or not M is 2-incoherent, we proceed further with the recursive con-
struction by computing

0,0,1,0)},
0,1,0,1)},
1,0,0,—1)}, and
1,1,0,0)}.

Ry ={S(121,5¢13),S(23},S(34}}, Where Sgioy =S4y = Spp4y = span{
S(1,3) = span{
S(23) = span{
S(34} = span{

~~ N —~
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It follows that the only vectors in range(M) with k = 2 or fewer non-zero entries are the scalar multiples
of v1 := (0,0,1,0), v := (0,1,0,1), v3 := (1,0,0,—1), and v4 := (1,1,0,0), so M is 2-incoherent if
and only if there exist non-negative real scalars c1, c2, c3, and cy4 for which

M = c10101" + 020202™ + 30303 + 40404 (45)
It is straightforward to use semidefinite programming (or even just solve by hand in this small example) to
see that no such scalars exist, so X is not 2-incoherent. It follows that X has factor width 3.

Software

Companion software implements numerical routines for determining k-incoherence of matrices,
the factor width, and k-learnability of quantum state collections. These are provided within the
togito quantum information package [46], leveraging PICOS [47] and the CVXOPT solver [48]
for semidefinite program optimization.
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A Proof of Lemma 7

We reproduce SDP (6), below

x = min {iz (2 Ms) |¢n~>} (46)

i=1 S:i¢S

where the minimization is over POVMS.
Define r; = |||¢;) |2 and

|471> _ { (1/1’{)‘1}),) when ¥i 7& 0 (47)

To be determined whenr; =0

to make |¢;) = r;i|¢;). Notice that we have the freedom to choose states above, and we do this

such that each one is orthogonal to everything else. We can do this by increasing the dimension if

need be and this particular choice will ultimately make the corresponding Gram matrix nice. For
an index i and subset S, define

0 whenieS$

fis = { 1 wheni¢S. (48)

Lastly, define q; = 1/n and R; s = r?t; g, for all i and S.
With these things defined, we can write the SDP in the following way

& = min {i Y qiRis(Ms, |lpi><¢i|>} (49)

i=15:|S|=k

where the minimization is over POVMS (the explicit constraints are omitted for clarity). When
written in this way, the objective function can be interpreted as the average reward when given
;) with probability g;, and measured with the POVM (Ms : |S| = k) to receive reward R; ;. This
framework has been studied in [49] and it can be shown that the optimal value of the precedmg
SDP equals that of the SDP

Oé—mln{z Y. qiRis(Ws, |i DY, Ws= G,WSZO} (50)

i=15:|S|=k S\S\ k

where we used G as the Gram matrix for the (normalized) states {|¢1), ..., [¢n) }-
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By substituting most of the parameters back in, we get

a:min{lir (ZW_g) i Z Ws =G, W5>O} (51)

i3 igs S:|S|=k

n 1. .

n Zi’ ZWS l Z Ws—* WsZO (52)
i-1 iZs s ok n

The rest of the analysis is easier if we define a diagonal matrix and its (generalized) inverse. If
we define the diagonal matrix D;; = r;, then we can rewrite r;|i) = D|i) and also the Gram matrix
G of the original states as

Gij = (Yil;) = rirj(pildy) = (DGD* )ij- (53)

Define the Moore-Penrose generalized inverse of D as D™ where (D*)i,]- =1/r; whenr; # 0, and
0 when r; = 0. Then we have, for i, j such that r;, 7 # 0:

Gij = (¢ilg)) = <1Pz’lP]> (DTGD™); . (54)
From this, it is easy to see by the choice of |¢;) when r; = 0 that
G=D"GD" +1Ir, (55)

where T only has support on the entries where r; = 0.
With this, the SDP reduces to

a:min{f (ZDW5D> Y W=

i=1 igs S:[S|=k

:\H

G,Ws > 0} : (56)

To finish the proof, we now argue that « is also equal to the optimal objective function value
of SDP (7) below, which we have defined as .

5=min{2n:<i| Yo OWsli): ) Ws = —G Ws>0} (57)

i=1 S¢S S:|S|=k

Proof that B < a. Suppose (Ws : |S| = k) is feasible in the a SDP (56) with objective function
value t. Define the following Ws := DWD* > 0. Since (Ws : |S| = k) is feasible, we know that
Ys:[8|=k Ws = (1/n)G, and thus

Y. Ws= )  DWsD*=(1/n)DGD* = (1/n)G. (58)
S:|S|=k S:|S|=k

Thus (Ws : |S| = k) is feasible in the g SDP (57) with objective function value

n

Z (il Y Wsliy =) (i| Y, DWsD|i) =t. (59)

i=1  S:¢S i=1  S:i¢S

Thus, B < a.



Proof that « < B. Let (Ws : |S| = k) be feasible in the § SDP (57) with objective function value s.
Define Ws := D*WsD* > 0. Since (Ws : |S| = k) is feasible, we have that Y5k Ws = (1/n)G.
Thus we have
Y, Ws= ) D'WsD*= ) (1/n)D"GD* (60)
S:[S|=k S:|S|=k S:|S|=k

which is almost feasible. If we add (1/n) It to any of the W, it will still be positive semidefinite and
now (Ws : |S| = k) is feasible in the a SDP (56). Note that this addition of It does not contribute
to the objective function value since DITD = 0, so we are not concerned to which variable it is
added.

All that remains is to compute the objective function value of this feasible solution. Notice that
since G;; = 0 for any i such that r; = 0, it is also the case that (Ws);; = 0 for all S. We can now
compute the objective function value as

n

(il ¥, DWsDI) = (il T DD*WeD* Dy = - (] T Wl = (i 1 Weli) =

Sigs i=1  sigs B0 SigS i SigS
(61)

1

Thus, we have o <  as required.

B Proof of Lemma9

Here we prove Lemma 9 which states that an indexed list of (possibly sub-normalized) pure quan-
tum states {|1),..., |¢,)} C C% is k-learnable if and only if its Gram matrix is k-incoherent.

“If” direction. Let G be the Gram matrix and suppose it is k-incoherent. Then SDP (7) has ob-
jective value 0, and by Lemma 7, so does SDP (6). Since that SDP attains an optimal solution as
the feasible region is the set of valid POVMS with () outcomes, and thus compact, we know the
existence of a POVM which satisfies the conditions for k-learnability.

“Only if” direction. Suppose the set is k-learnable. Then SDP (6) has objective function 0, and
by Lemma 7, so does SDP (7). If SDP (7) attains an optimal solution, then said solution asserts that
G is k-incoherent. Thus, showing attainment of an optimal solution suffices to finish the proof.

We proceed with a similar argument as above, that the feasible region is bounded, and thus
compact. Since each Ws is positive semidefinite, we have that | Ws|lt, = Tr(Ws) < 1 Tr(G) < 1.
Thus, the feasible region is bounded in the trace-norm (and hence any norm since we are working
in finite dimensions).

C Proof of Lemma 22

Here we prove Lemma 22, which states that the problem WeakOPT(Z}',1/ poly) reduces to the
problem WeakMEM(Z}, 1/ poly). We require a lemma and a corollary to prove this result.

Lemma 31. Let M € Herm(C"). If |M — L||p < 1/d then M is a 2-incoherent positive operator (and
thus k-incoherent for all k € {2,...,n}).

In particular, this lemma demonstrates that 7' has non-empty interior.
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Proof. Multiplying by n, it suffices to prove that if || M — I||; < 1, then M is 2-incoherent. It is easy
to see that M must be positive semidefinite under this condition. Observe that

n n

IM—T§ =Y (Aj—1)* =n—2Tr(M) + ) A%. (62)

j=1 j=1

We know from [37, Theorem 7] that if M € Pos(C") has Tr(M) = 1 and eigenvalues A1, A,
.. An then 3 /\]2 < 1/(n —1) implies that M is 2-incoherent. By rescaling M, we see that this
is equivalent (for all M € Pos(C"), not just those with Tr(M) = 1) to 1" 4 /\]2- < (Tt(M))*/(n—1)
implying 2-incoherence of M. When combined with Equation (62), this tells us that if

(Tr(M))?

|M—TI|| <n—2Tr(M) + o

(63)

then M is 2-incoherent (and thus k-incoherent for all k € {2,...,n}).
If we treat the right-hand-side of Inequality (63) as a function of Tr(M) then standard calculus
techniques show that it is minimized when Tr(M) = n — 1, and it minimum value is

(n—1)?
n—1

n—2n—-1)+ =1. (64)

It follows that if | M — I|% < 1 then Inequality (63) must hold, so M must be 2-incoherent. Taking
the square root of both sides of this inequality gives the statement of the theorem. O

Corollary 32. For any unit vector u € C" supported on at most k coordinates, and any x > 0, it holds
that

Dyi=(1— %)(x% + (1= x)uu*) € S, —5) (65)

forany § < 5.

Proof. Let Dy + 6E € S(D, ), where E is an arbitrary Hermitian matrix with || E||; = 1. Note that
Tr(E) < n, so the trace of Dy + JE is at most 1. We need to prove that Dy + 0E € Z;. Note that
Dy+6E =x((1- 5L+ 2E)+ (1 - 2)(1 — x)uu*. If § < n~lx, then §(x 1+ 1) < n~!, so by

Lemma 31 the matrix ((1 — 2)4 + 2E) is positive semidefinite of factor width < k. Since uu* also

has factor width < k, and 7! is convex, the statement follows. O

Proof of Lemma 22. The above corollary demonstrates taht B(I/n,n"!) C I} C B(0,1). Since the
ratio of the radii of these two balls is polynomial, by Fact 20, WeakOPT(Z},1/ poly) reduces to
WeakMEM(Z}', 1/ poly). This completes the proof. O

D Proof of Lemma 23

Lemma 23 states that the set of extreme points of Z}! is
P = {vv* : v has at most k non-zero entries and ||v||, =1} U{0}. (66)

For the inclusion 2, it is clear that 0 is an extreme point. Now, let v0* be another point in P,
and suppose that vo* = pp + (1 — p)o for some p,0 € Z!. Then p = avv* and ¢ = Bov* for
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some a, B € [0,1] (otherwise vv* would have rank > 1, a contradiction). Taking the trace, we have
pe+(1—p)p=1soa=p=1.
For the inclusion C, suppose that p is an extreme point of 7). Let

o

I
—_

o=Y ot =Y B0 () 67)
i=1

2
i [oi]

be a factor width k decomposition of p, as in (8). Since this is a convex combination of elements
of I}/, it must hold that m = 1,ie. p = vv]. It remains to prove that Tr(p) € {0,1}. Suppose
toward contradiction that Tr(p) = « € (0,1). Then p = 1(1p) + 1((2a — 1)p) is an expression of p
as a non-trivial convex combination of elements of 7!, hence p is not extremal. This completes the

proof.

E Proof of Proposition 26

Here we prove Proposition 26. For convenience, we recall the statement of the proposition.

Proposition 33 (Proposition 26). Let n > k > 2 be integers, let C be the adjacency matrix of a simple
nonempty undirected graph G on n vertices with e edges, and let C' = \/%C be the normalization in

Frobenius norm. Then there exist functions v = (e, k,n) € R and 6 = 1/poly(n) for which
* u(k,C") > v+ if G contains a k-clique.
* u(k,C") < —6if G does not contain a k-clique.

Proof. By Corollary 24, j(k,C) is equal to the maximum eigenvalue of the adjacency matrix of
an at-most-k-vertex subgraph of G. It is a standard fact that the maximum eigenvalue of the

adjacency matrix of a k-vertex graph H with f edges is upper bounded by 1/ 2}“(7;{7*1), with equality

if and only if H is the complete graph (see e.g. [50]). Note that this quantity is equal to k — 1 if H
is the complete graph, and is upper-bounded by

2 1
\/(k—1)2—2+k§k—1—€(k) (68)

otherwise, for some e(k) = 1/poly(k).
Suppose that G contains a k-clique, and let u € C" be a unit vector supported on at most
k coordinates for which it holds that Tr(C'uu*) = % (such a vector exists by extremality, see

Lemma 23). Keeping ¢ indeterminate for now, let x = 216 and let D, € S(Z}}, —¢) as in (65). Note
that

(1—-(2n+1)0)(k—1)
V2e '

Now suppose that G does not contain a k-clique. Let X € S(Z},4), so X = F + JE for some
Fely and Hermitian matrix E of Frobenius norm 1. Then

T(C'D,) = (1- & LI (69)

Lt SN SV} (70)

Tr(C/X) = TI'(CIF) +5TI‘(CIE) < V2 ev2e
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Lety = % - - 126 +26. Then Tr(C'X) < v — 8. Now, we just need to show that we can choose

d = 1/poly(n) small enough so that Tr(C'Dy) > v 4 J. One can easily verify that the choice
1 1

6= > (71)
ev2e(3 + %) poly(n)
suffices. This completes the proof. ]
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