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We apply quantum error mitigation techniques to a variety of benchmark problems and quantum
computers to evaluate the performance of quantum error mitigation in practice. To do so, we
define an empirically motivated, resource-normalized metric of the improvement of error mitigation
which we call the improvement factor, and calculate this metric for each experiment we perform.
The experiments we perform consist of zero-noise extrapolation and probabilistic error cancellation
applied to two benchmark problems run on IBM, IonQ, and Rigetti quantum computers, as well
as noisy quantum computer simulators. Our results show that error mitigation is on average more
beneficial than no error mitigation — even when normalized by the additional resources used —
but also emphasize that the performance of quantum error mitigation depends on the underlying
computer.

I. INTRODUCTION

Quantum computers have steadily improved over the
past two decades as can be seen in component metrics
like T1 and T2 times [HWFZ20, SR20] as well as full
system metrics like quantum volume [CBS+19]. While
we expect these hardware improvements to continue, it
is generally accepted that error rates cannot be made
low enough purely by hardware improvements. Rather,
to achieve error rates low enough for useful applications,
hardware improvements should be coupled with algorith-
mic or software methods.

The most commonly pursued algorithmic method is
quantum error correction [Sho95, CS96, Ste96], which
generally provides a tradeoff in qubit quantity for qubit
quality — i.e., using more qubits to achieve a lower log-
ical error rate. Today, the state-of-the-art experiments
in quantum error correction [AI21, AI22] confirm an ex-
ponential suppression of errors as the code distance in-
creases but do so for relatively small code distances. For
example, the largest surface code implementation to our
knowledge [AI22] uses 49 physical qubits to encode one
logical qubit in a distance five surface code, while rough
estimates for current error rates require around 1000
physical qubits per logical qubit for fault tolerance.

Because the experimental requirements of quantum
error correction are very demanding, and because of
widespread interest in applications of noisy quantum
computers [Pre18], a new set of algorithmic methods to
deal with errors has emerged in recent years. These
new methods are referred to as quantum error mitiga-
tion [ECBY21, CBB+22] and are designed to be less ex-
perimentally demanding than full quantum error correc-
tion. However, this comes at the cost of being less general
and more heuristic than quantum error correction.

While a relatively large number of error mitiga-
tion techniques have been proposed [SCW+19, Vui17,
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KTC+19, GTHL+20, UNdJ20, QCA+20, ZLZ+20], there
have been relatively few experiments using error mitiga-
tion, despite the fact that error mitigation is specifically
designed for current quantum computers. A summary
from the literature of quantum error mitigation experi-
ments performed on quantum computers is shown in Ta-
ble I. Note that this table is not exhaustive for all bench-
marks outside of the context of quantum error mitigation.
For instance, this review [SL22] provides a thorough col-
lection of T1 and T2 times for the dynamical decoupling
benchmark.

In this work, we evaluate quantum error mitigation in
practice using a suite of experiments on various bench-
marks and quantum computers. We consider two er-
ror mitigation techniques, two benchmark problems, and
four quantum computers. To quantify the performance
of quantum error mitigation (relative to no error miti-
gation), we define a natural metric that we call the im-
provement factor.

Our results show that quantum error mitigation im-
proves the performance of noisy quantum computations
in nearly all experiments we consider, even when normal-
ized by the additional resources (namely, samples) used
in the error mitigation techniques. Depending on the
number of qubits, circuit depth, and particular computer
in the experiment, our results show between a 1x and 7x
improvement from quantum error mitigation. Further,
the error mitigation we use is “out-of-the-box” in that it
is not tailored to the benchmark problems or computers
we consider. Because of this, we expect quantum error
mitigation to be an essential component of NISQ and
even error-corrected computations and offer perspective
on these points.

The rest of the paper is organized as follows. Section II
describes our methods for assessing the performance of
quantum error mitigation in practice. This includes our
definition of the improvement factor (Sec. II A), the error
mitigation techniques (Sec. II B), the benchmark prob-
lems (Sec. II C), and the quantum computers (Sec. IID)
used in our experiments. We present the results of our
experiments in Sec. III, and we discuss them in the larger
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QEM Benchmark Qubits n Computer(s) Ref.

ZNE

RB 1, 2 5-qubit superconducting device [KTC+19]
RB 2 IBMQ London & Rigetti Aspen-8 [LMK+20]

RB, PG 2 - 5 IBMQ Lagos & IBMQ Casablanca [CDM+22]
RB, MC 3, 5, 12 IBMQ Lima, IBMQ Kolkata, Rigetti Aspen-M2, IonQ Harmony (This work)
VQE 4 5-qubit superconducting device [KTC+19]
QV 5 IBMQ Belem, IBMQ Lima, & IBMQ Quito [LMR+22]

RB, TE 26 27-qubit superconducting device [KWY+21]

PEC RB 2 2-qubit trapped ion (171Yb+) device [ZLZ+20]
RB, MC 3 Rigetti Aspen-M2, IBMQ Lima, IonQ Harmony (This work)
CYC 4 4-qubit superconducting device [FHV+22]

TE, CYC 4, 10 27-qubit superconducting device [BMKT22]

DD

IDLE 1, 2 IBMQX4, IBMQX5, & Rigetti Acorn [PAFL18]
Adder, GHZ, QAOA, QFT, VQE 4, 5, 6 IBMQ Guadalupe, & IBMQ Jakarta [SRM+22]

QPE 5 IBMQ Paris, IBMQ Guadalupe, & IBMQ Toronto [DTDQ21]
QV 6 IBMQ Montreal [JJAB+21]
QFT 6, 7 IBMQ Paris, IBMQ Guadalupe, & IBMQ Toronto [DTDQ21]
BV 7, 8 IBMQ Paris, IBMQ Guadalupe, & IBMQ Toronto [DTDQ21]

QAOA 8, 10 IBMQ Paris, IBMQ Guadalupe, & IBMQ Toronto [DTDQ21]

CDR RB, PG 2 - 5 IBMQ Lagos & IBMQ Casablanca [CDM+22]
VQE 5 IBMQ Rome [CACC21]
VQE 6 IBMQ Toronto [CMSC22]
VQE 16 IBMQ Almaden [ZCN+21]

SSE VQE 2 2-qubit superconducting device [CRD+18]
VQE 2 3-qubit superconducting device [SBMS+19]

VD GHZ 5 5-qubit trapped ion, UMD, (171Yb+) device [SCZ+22]

TABLE I: A history of quantum error mitigation experiments on quantum computers in literature. Quantum error
mitigation (QEM) Technique acronyms: ZNE = zero-noise extrapolation, PEC = probabilistic error cancellation,
also referred to as quasi-probabilistic decomposition (QPD) by some authors, DD = dynamical decoupling, SSE =
subspace expansion, VD = virtual distillation, CDR = Clifford data regression. Benchmark acronyms: RB =
randomized benchmarking, VQE = variational quantum eigensolver, TE = time evolution, IDLE = allowing a state
to idle (identity operation), CYC = alternate cycles of single-qubit layers and Clifford layers, GHZ =
Greenberger–Horne–Zeilinger, MC = mirror circuits, Adder = Ripple Carry Adder.

context of quantum error mitigation and quantum com-
putation in Sec. IV.

II. METHODS

To assess the experimental performance of quantum
error mitigation, we define a natural measure comparing
the accuracy of an experiment with quantum error miti-
gation to the accuracy without quantum error mitigation.
This measure, which we call the improvement factor, is
motivated and defined in Sec. II A. We experimentally
calculate this measure using two quantum error mitiga-
tion techniques (Sec. II B) with two benchmark problems
(Sec. II C) on four quantum computers and three noisy
quantum computer simulators (Sec. IID). All the error
mitigation techniques for this study were implemented
using the Mitiq error mitigating compiler [LMK+20].

A. Improvement factor

The goal of most quantum error mitigation techniques
is to improve the estimation of expectation values. Fol-

lowing an empirical approach, we quantify the improve-
ment of error mitigation by comparing the estimation
errors obtained with and without error mitigation.

Let ρ be an ideal n-qubit quantum state prepared by a
noiseless quantum computer after the execution of some
given quantum circuit C, i.e., ρ = C|0⊗n〉〈0⊗n|C†. For
an observable Â = Â†, the ideal (noiseless) expectation
value is

A = tr[ρÂ] = tr[C|0⊗n〉〈0⊗n|C†Â]. (1)

When using a noisy quantum computer, we instead pre-
pare a noisy state ρ′ and collect N shots (samples) to
obtain an empirical estimate A′ of the expectation value.

The goal of quantum error mitigation (QEM) is to
compute some quantity AQEM which is a more accurate
estimate of the ideal expectation value A compared to the
unmitigated estimate A′1. Generally, computing AQEM

is done by executing a set of circuits {C1, ..., CkQEM
} re-

lated to C — usually with a different number of qubits,

1 Note that here and throughout, we use the acronym QEM to refer
to a generic quantum error mitigation technique and a specific
acronym for a specific quantum error mitigation technique. So,
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FIG. 1: An overview of our method to assess the performance of quantum error mitigation in practice. An
experiment consists of (a) a QEM technique, (b) a benchmark problem, and (c) a quantum computer. The result
of an experiment is the improvement factor (Sec. II A) µQEM defined in Eq. (5), potentially at various numbers of
qubits n and/or circuit depths d. (a) Cartoon graphics of the two quantum error mitigation techniques we consider.
In zero-noise extrapolation (Sec. II B 1), a circuit C is mapped to a set of noise-scaled circuits by adding gates that
compile (without noise) to the identity. The expectation value is computed for each noise-scaled circuit, and the
results are extrapolated to zero-noise with either linear or Richardson extrapolation. In probabilistic error
cancellation (Sec. II B 2), each ideal (unitary) gate of a circuit is expressed in the noisy basis of the computer. A
number of new circuits are sampled from this expansion and executed results are combined to produce the
error-mitigated result. (b) The two benchmark problems we use in our experiments (Sec. II C). An n-qubit, depth d
mirror circuit C is defined by a single layer of Clifford gates (white squares), d Clifford layers followed by their
inverses (rectangles in colored boxes, daggers denote inverses) with intermediate random Pauli gates (circles in
colored boxes), and a final layer of Pauli (white circles) and Clifford gates. This sequence produces a single bitstring
|zC〉, and we take Â = |zC〉〈zC | as the observable. An n-qubit, depth d randomized benchmarking circuit is defined
by a random sequence of d elements of the n-qubit Clifford group and a final inverse such that the final state is |0〉,
and we take Â = |0〉〈0| as the observable. (c) Qubit coupling maps for the four quantum computers we perform
experiments on (see Sec. IID for device characteristics and error rates). Red nodes show qubits used for n = 3 qubit
experiments. Qubit selection was not available on IonQ Harmony and so nodes are unlabeled. We also perform
experiments on noisy quantum computer simulators (Sec. IID 5).

gates, and/or total shots NQEM — then post-processing
the noisy results to obtain the error-mitigated estimate
AQEM.

We refer to an evaluation of an unmitigated expec-
tation value A′ as a trial. After performing t trials
A′[1], ..., A

′
[t] we can quantify the estimation error through

for example, the zero-noise extrapolated expectation value of Â
is denoted AZNE, and similarly for other quantities. A summary
of our notation is included in Appendix A.

the root-mean-square error (RMSE)√√√√1

t

t∑
i=1

(
A′[i] −A

)2
. (2)

We use the RMSE since it reduces to the absolute error
when all A′[i] are approximately equal (e.g. in the limit of
large N) and, at the same time, it also takes into account
the estimation error due to the statistical fluctuations of
the results A′[i] over different trials.

Similarly, we refer to an evaluation of AQEM as a QEM
trial. After performing t QEM trials A[1]

QEM, ..., A
[t]
QEM we
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evaluate the RMSE√√√√1

t

t∑
i=1

(
A

[i]
QEM −A

)2
. (3)

As noted, evaluating each A
[i]
QEM potentially uses addi-

tional resources in the form of circuits, qubits, gates,
and/or shots. To account for these additional resources,
we define the problem-specific improvement factor

µQEM(C, Â) :=

√
N
∑t
i=1(A

′
[i] −A)2√

NQEM

∑t
i=1(A

[i]
QEM −A)2

, (4)

i.e., the shot-normalized ratio of root-mean-square errors.
(See Sec. IVB for a discussion on normalizing by other
resources, e.g. qubits and gates, in addition to shots.)
This value is a natural, empirically defined measure of the
performance of quantum error mitigation for a specific
expectation value problem defined by a circuit C and
observable Â. To generalize over different problems in
addition to averaging over multiple trials, we also average
over a set of circuits C and a set of observables Â to define
the improvement factor

µQEM :=

√
N
∑
C∈C,Â∈Â

∑t
i=1(A

′
[i] −A)2√

NQEM

∑
C∈C,Â∈Â

∑t
i=1(A

[i]
QEM −A)2

. (5)

Here, as in Eq. (4), the circuit C is implicit in the
expectation values A, A′[i], and A

[i]
QEM, e.g. A =

tr[C|0〉〈0|C†Â]. While this definition is general with re-
spect to the circuits C, experimentally we consider two
classes of benchmark circuits (Sec. II C) and quote the
results from these classes of circuits separately. Indeed,
for most experiments on quantum computers, we gener-
ate |C| = 4 randomized instances of benchmark circuits
from the two classes. We choose benchmark circuits such
that there is one natural observable for each circuit, i.e.∣∣∣Â∣∣∣ = 1, where | · | denotes the cardinality of the set. In
all cases, due to limited device availability, we perform
t = 1 trial for each C, Â ∈ C × Â.

We note that authors of [CDM+22] also define a mea-
sure of the improvement from error mitigation, in par-
ticular a problem-specific measure. This quantity, which
they call the relative mitigation error and denote by ε, is
given by (in the notation of this paper)

εQEM(C, Â) :=
|AQEM −A|
|A′ −A|

. (6)

For t = 1, µQEM(C, Â) =
√

N
NQEM

ε−1QEM(C, Â).

B. Quantum error mitigation techniques

1. Zero-noise extrapolation

We apply zero-noise extrapolation (ZNE) [TBG17,
LB17, KTC+19] with both linear and Richardson ex-
trapolation — which we respectively denote ZNE(L) and
ZNE(R) — to our benchmark problems. For both cases,
we evaluate kZNE = 3 noisy expectation values A′(λi) at
different noise scale factors λi ∈ {1, 2, 3} and the zero-
noise limit is obtained as a linear combination of the re-
sults

AZNE =

kZNE∑
i=1

ηiA
′(λi). (7)

For Richardson extrapolation, the best fit coefficients ηi
in Eq. (7) are given by [GTHL+20]

ηi :=
∏
j 6=i

λj
λj − λi

. (8)

For linear extrapolation, the coefficients ηi are obtained
from a linear best fit and also only depend on the noise
scale factors, but the analytical expression is more in-
volved (see Eq. (26) of [GTHL+20]).

For all ZNE experiments, we use global unitary fold-
ing [GTHL+20] to scale noise. For odd integer scale
factors λi, this amounts to replacing the circuit C by
C(C†C)(1−λi)/2. If λi is not an odd integer, a frac-
tion of the full circuit is folded and appended to the
circuit as described in [GTHL+20]. Each noise-scaled
circuit is executed with bN/kZNEc = b104/3c shots so
that NZNE ' N = 104 (i.e., so that we use the same
total number of shots in ZNE as in the unmitigated ex-
periment). For more details on our ZNE implementation,
see Appendix B 4 a.

2. Probabilistic error cancellation

We also apply probabilistic error cancellation
(PEC) [TBG17, EBL18, ZLZ+20] to each benchmark
problem. Here, the first step is to characterize the set
of noisy, implementable operations {Oα} of a computer
so that we can represent the ideal (noiseless) operations
{Gi} of a circuit in this basis, namely

Gi =
∑
α

ηi,αOα. (9)

Note that the calligraphic symbols Gi and Oα stand for
super-operators acting on the quantum state of the qubits
as linear quantum channels, and ηi,α ∈ R. In principle,
this requires full tomographic knowledge of the noisy op-
erations {Oα}, but we make two simplifying assumptions
in our experiments:

1. We neglect errors of single-qubit gates.
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2. We assume that all two-qubit gates G2Q (CNOT or
CZ in our experiments) are followed by local depo-
larizing noise, i.e.

G(noisy)2Q = (Dp ⊗Dp) ◦ G2Q, (10)

where Dp(ρ) = (1−p)ρ+ p
3 (XρX+Y ρY +ZρZ) is

the single-qubit depolarizing channel and p is the
local error probability.

Under these assumptions, the quasi-probability represen-
tation of the ideal G2Q gate can be derived for any value
of p [TBG17, Tak21]. For each G2Q operation, we obtain
p from the error rate in the calibration data reported by
the hardware vendor for the associated two-qubit gate
(IBM, Rigetti), or from the average two-qubit error rate
(IonQ). More precisely, in Eq. (10) the overall two-qubit
error probability is p2Q = 1 − (1 − p)2. So, given the
parameter p2Q reported by the calibration data of the
computer, we estimate p = 1 −

√
1− p2Q and use this

in Eq. (10) to obtain the basis Oα.
After obtaining the basis Oα, we represent all two-

qubit gates Gi in the circuit in this basis as in Eq. (9)
and stochastically sample kPEC = 100 new circuits to ex-
ecute. Each circuit is executed with N/kPEC = 104/100
shots so that NPEC = N = 104 (i.e., so that we use the
same total number of shots in PEC as in the unmitigated
experiment). For more details on our implementation of
PEC, see Appendix B 4 b.

C. Benchmark problems

A benchmark problem is defined by an n-qubit, depth
d quantum circuit C, and an observable Â as in Eq. (1).
In this work, we consider two benchmark problems in
which the circuit C produces (without noise) a single
bitstring zC ∈ {0, 1}n, and we always take Â = |zC〉〈zC |
as the corresponding observable. Both circuits have a
number of qubits n and a depth d which can be varied
independently, and we use |C| = 4 (random) instances of
each circuit for a given n, d. In experiments on quantum
computers, we choose n ∈ {3, 5} and d ⊆ {1, 3, 5, 7, 9}.
Additionally, for a specific device (IBMQ Kolkata), we
also perform a larger experiment with n = 12 qubits and
d ∈ {1, 5, 9}. The number of one- and two-qubit gates for
a given n, d depend on the circuit type and is discussed
for each circuit type below. As discussed in Sec. IID 5
we repeat each of these experiments on noisy quantum
computer simulators for comparison.

1. Randomized benchmarking

We use randomized benchmarking (RB) cir-
cuits [EME10, MGE12, CGC+13, GCM+12, MSS+19] as
one benchmark problem in our experiments. An n-qubit,
depth d RB circuit is a sequence of d random Clifford

group elements UdUd−1 · · ·U1, followed by a (classically
computed) inverse element Uinv = (UdUd−1 · · ·U1)

−1,
such that the full circuit

C = UinvUdUd−1 · · ·U1 (11)

is the identity operation (without noise). As such, the
only bitstring that should be measured is zC = 0n and
we take the observable to be Â = |zC〉〈zC | = |0〉〈0|⊗n.

In all experiments, we use a line of qubits and apply
2-qubit RB sequences to each neighboring pair of qubits
on the line. If the total number of qubits is odd we also
apply a 1-qubit RB sequence to the last qubit. The ratio-
nale for this choice is that a linear topology can be easily
embedded in the connectivity graph of all quantum com-
puters we consider in this work, and therefore this choice
makes our benchmarks more consistent across different
computers.

Note that the parameter d is the number of (parallel)
random Clifford elements, not the actual physical depth
of the circuit. Each Clifford element must be decomposed
into two-qubit gates and single-qubit gates. The total
number of two-qubit gates depends on both d and the
number of qubits n. In Table II, we report the average
number of two-qubit and single-qubit gates used in our
experiments.

d n = 3 n = 5 n = 12
1 3 (22) 7 (39) 19 (99)
3 6 (44) 11 (73) 36 (204)
5 9 (64) 18 (118) 53 (307)
7 12 (80) 24 (150) 73 (403)
9 15 (108) 31 (194) 89 (506)
12 18 (135) 37 (242) 115 (651)

TABLE II: Average number of two-qubit (single-qubit)
gates for an n-qubit, depth d RB circuit. The average is
taken over ten random instances. Note that the number
of single-qubit gates may differ on different hardware
due to the final compilation into native gates, but the
number of two-qubit gates is hardware-independent.

2. Mirror circuits

We also use mirror circuits [PSR+21, PRY+22] as a
benchmark problem. Mirror circuits are similar to RB
circuits in that they have a structure of random layers,
but their final state |zC〉 is randomized. This configu-
ration allows a more uniform sampling of measurement
errors.

An n-qubit, depth d mirror circuit C is a random-
ized sequence of d Clifford layers and Pauli layers, where
Clifford layers are organized in such a way to conju-
gate a Pauli layer into a rotated Pauli layer (see Fig.
1 of [PSR+21]). The full mirror circuit C is equiva-
lent to a random Pauli operator P, thus the final ideal
(noiseless) state is a random computational basis state
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|zC〉 = P|00 . . . 0〉, and we take the observable to be
Â = |zC〉〈zC |.

It is important to notice that the Clifford depth d re-
ported in our results for mirror circuits is the number of
random Clifford layers. Since each Clifford layer is com-
piled into elementary gates, and since additional random
Pauli layers are present in the circuit, the Clifford depth
d is different from the number of physical gates applied in
the circuit. The average number of two-qubit and single-
qubit gates used in our experiments are reported in Table
III for different values of d and n.

d n = 2 n = 5 n = 12
1 2 (26) 4 (41) 10 (95)
3 6 (46) 12 (68) 30 (158)
5 10 (68) 20 (98) 51 (223)
7 14 (87) 28 (125) 72 (284)
9 18 (108) 36 (154) 92 (350)
12 24 (138) 48 (197) 121 (448)

TABLE III: Average number of two-qubit (single-qubit)
gates for an n-qubit, depth d mirror circuit. The
average is taken over ten random instances. Note that
the number of single-qubit gates may differ on different
hardware due to the final compilation into native gates,
but the number of two-qubit gates is
hardware-independent.

D. Quantum computers

We test error mitigation techniques with each bench-
mark circuit on four quantum computers — IBMQ
Kolkata, IBMQ Lima, Rigetti Aspen-M2, and IonQ Har-
mony — shown in Fig. 1 and described in the following
sections. We also perform experiments on noisy quantum
computer simulators for comparison to hardware and for
additional experiments. The noise models we use are de-
scribed in Sec. IID 5.

1. IBMQ Lima

The IBMQ Lima computer consists of five supercon-
ducting transmon qubits arranged in a “T-shape” topol-
ogy shown in Fig. 1(c). The error rates for the computer
are listed in Table V in Appendix B 3. In our n = 3 qubit
experiments, we use the qubits with the lowest two-qubit
error rates, namely the qubits labeled (0, 1, 2). For n = 5
qubit experiments we use all qubits on the device.

2. Rigetti Aspen-M2

The Rigetti Aspen-M2 computer consists of 80 super-
conducting qubits arranged in a hexagonal lattice shown
in Fig. 1(c). The error rates for the computer are listed

in Table VII in Appendix B 3. We perform n = 3 qubit
experiments on Rigetti Aspen-M2 using a line of qubits
with relatively low two-qubit error rates, namely the
qubits labeled (10, 17, 113) highlighted in Fig. 1(c). Due
to limited device availability, we were only able to per-
form n = 3 qubit experiments on this computer.

3. IonQ Harmony

The IonQ Harmony computer consists of 11 trapped
ion qubits with all-to-all connectivity, shown in Fig. 1(c).
Unlike the IBMQ Lima and Rigetti Aspen-M2 comput-
ers, at the time of performing experiments on IonQ Har-
mony, it was not possible to select which qubits to use
when submitting jobs or to check which qubits were used
after jobs were completed. The average one-qubit and
two-qubit gate errors are respectively ε1Q = 0.0029 and
ε2Q = 0.0073.

It is also worthwhile to note that, at the time of per-
forming experiments, it was not possible (from the AWS
platform) to disable compilation on IonQ Harmony, un-
like on IBMQ Lima and on Rigetti Aspen-M2. Dis-
abling compilation is important in error mitigation be-
cause techniques often insert gates that are logically triv-
ial (e.g., GG† in zero-noise extrapolation) or perform
other modifications to produce circuits that are meant
to be run exactly as specified. To avoid these problems
when running ZNE on IonQ Harmony, we add barriers
of single-qubit infinitesimal rotations as described in Ap-
pendix B 6. Due to limited device availability, we were
only able to perform n = 3 qubit experiments on this
computer.

4. IBMQ Kolkata

To assess the performance of error mitigation on larger
benchmark problem sizes (namely, n = 12 qubit exper-
iments), we use the IBMQ Kolkata device based on the
27-qubit superconducting chip — see Appendix B 3 for
the coupling map (Fig. 6) and error rates (Table VI).

5. Noisy quantum computer simulators

In addition to quantum computers, we also perform ex-
periments on noisy quantum computer simulators (here-
after “noisy simulators”). There are two primary reasons
for this. First, this allows us to compare how error miti-
gation performs with simple noise models relative to ac-
tual quantum computers. Second, using noisy simulators
allows us to circumvent practical limitations like device
availability to perform additional experiments.

We consider two classes of noisy simulators: (i) one
which implements a simple noise model of single-qubit
depolarizing noise after each gate, and (ii) one which is
based on the error rates of a particular computer and
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FIG. 2: (Bottom panel) Unmitigated expectation values
(orange squares) and the corresponding mitigated
expectation values using ZNE(R) (green triangles) for
n = 3 qubit RB circuits executed on IBMQ Lima. For
all depths, the ideal expectation value is equal to 1
(dotted line). (Top panel) The improvement
factor Eq. (5) at each depth for the results in the
bottom panel.

so is meant to closely emulate that computer. The sim-
ple noise model we use is 1% depolarizing noise after each
two-qubit gate — i.e., each two-qubit gate (CNOT) is re-
placed by Eq. (10) with p = 0.01. In addition to this sim-
ple noise model, we also use a noise model based on the
error rates of the IBMQ Lima computer (referred to as
FakeLima). This noisy simulator has the same topology
as IBMQ Lima shown in Fig. 1(c) and includes inhomoge-
neous single-qubit gate errors, two-qubit gate errors, and
measurement errors based on the device characteristics
in Table V. Similarly, we used IBMQ FakeKolkataV2 to
classically simulate the hardware experiments performed
on the real IBMQ Kolkata device. Its coupling map and
error rates are reported in Fig. 6 and Table VI, respec-
tively.

III. RESULTS

As described in Sec. II, we applied ZNE(L), ZNE(R),
and PEC to RB circuit and mirror circuit benchmarks on
IBM, IonQ, and Rigetti quantum computers, as well as
noisy quantum computer simulators. For each of these
experiments, we compute the improvement factor Eq. (5)
to quantify the performance of each error mitigation tech-
nique.

An example of the results from one particular experi-
ment is shown in Fig. 2. Here, we show the result from
applying ZNE(R) to n = 3 qubit RB circuits of vari-

ous depths on IBMQ Lima. At each depth, we generate
|C| = 4 RB circuits and evaluate the expectation value
with and without error mitigation using t = 1 trial, and
use this to compute the improvement factor Eq. (5). As
shown in Fig. 2, the “raw” (unmitigated) results diverge
from the ideal (noiseless) expectation value as the depth
d increases, while the ZNE(R) results are closer to the
ideal expectation value but generally have higher vari-
ance. This is quantified in the improvement factor which
here ranges from µZNE(R) ' 1 to µZNE(R) ' 6. In par-
ticular, all depths d > 1 show an improvement factor
µZNE(R) > 1, indicating ZNE(R) was always beneficial to
use in this example.

We show the results of all n = 3 experiments in Fig. 3.
Here, results are arranged in a grid displaying error miti-
gation techniques and benchmark problems, and different
colored markers in each subplot show results on different
quantum computers, including noisy simulators. As a
baseline for comparison, we consider a very simple noise
model of 1% depolarizing noise (see Sec. IID 5), and we
find as expected that this simple noise model generally
produces the largest improvement factors in experiments.
(The interesting exception is ZNE(R) for which IBMQ
Lima shows the largest improvement factors.) On real
quantum computers, there are additional sources of error
including state preparation and measurement (SPAM)
error as well as more complicated (in)coherent gate and
crosstalk errors, so it is expected — as we see in the re-
sults — that these improvement factors are lower. How-
ever the improvement factors on the IBMQ Lima com-
puter — as well as the improvement factors on the IBMQ
Lima simulator which follow the real computer fairly
closely — are still above µ = 1, generally ranging be-
tween µ ' 1 and µ ' 4, indicating that error mitigation
is beneficial on this device.

The improvement factors for PEC are lower, between
µ ' 1 and µ ' 2, so PEC was generally less beneficial
to run than ZNE, but still more beneficial than no error
mitigation for most backends (IBM, IonQ, and all simula-
tors.). Moreover, we should take into account that PEC
was applied assuming a very simplified noise model (de-
polarizing) and so we expect better performances when
PEC is based on a more faithful noise characterization.
On IonQ Harmony, there are several cases where µ < 1,
especially in ZNE(R) experiments, so ZNE(R) was gen-
erally worse to use than no error mitigation on this com-
puter, while ZNE(L) was more beneficial than no error
mitigation. Interestingly, most improvement factors on
Rigetti Aspen-M2 are close to µ = 1, so error-mitigated
results were generally the same as unmitigated results
on this computer. Recall that our improvement fac-
tor Eq. (5) normalizes by additional shots.

We repeat the same type of experiments using n = 5
qubits and show these results in a similar format in Fig. 4.
Here we were unable to perform experiments on Rigetti
Aspen-M2 or IonQ Harmony due to limited device avail-
ability. We see again in these results that the improve-
ment factors for the simple 1% depolarizing noise model
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FIG. 3: Improvement factor Eq. (5) results for n = 3 qubit experiments. From left to right, the quantum error
mitigation techniques are ZNE with linear extrapolation, ZNE with Richardson extrapolation, and probabilistic
error cancellation. The top panel shows improvement factors for over |C| = 4 randomized benchmarking circuits, and
the bottom panel shows results for |C| = 4 mirror circuits. Circle markers show quantum computer results and
square markers show noisy quantum computer simulator results. In most cases, improvement factors are highest for
the 1% depolarizing noise model (grey squares), which is expected as this is the simplest noise model. Improvement
factors on IBMQ Lima (blue circles) are almost always above µ = 1, and the IBMQ Lima simulator results (blue
squares) follow the computer results fairly closely. Improvement factors on Rigetti Aspen-M2 (orange circles) and
IonQ Harmony (green circles) are frequently below µ = 1 — notably for ZNE(R) RB circuits — indicating that error
mitigation did not help in these experiments. Improvement factors from PEC are notably smaller than the ZNE
experiments but are mostly above µ = 1.
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FIG. 4: Improvement factor Eq. (5) results for n = 5 qubit experiments, in the same format as Fig. 3. In this case,
we still see that improvement factors are usually highest on the 1% depolarizing noise simulator, as expected. The
average improvement factors for ZNE are comparable but slightly lower than those of the n = 3 qubit experiments,
whereas the average improvement factors for PEC are noticeably larger than those of the n = 3 qubit experiments.

are generally the largest, as expected. The improvement
factors on IBMQ Lima are comparable in magnitude to
the n = 3 experiments, and in all cases, µ ≥ 1 so er-
ror mitigation was always beneficial. We also see that
the IBMQ Lima simulator results follow the results of
the real computer fairly closely, as in the n = 3 qubit
experiment.

To further test the performance of quantum error mit-
igation as the problem size increases, we perform n = 12
qubit experiments on both a hardware device and a

noisy quantum computer simulator and show these re-
sults in Fig. 5. The hardware device is the 27-qubit
IBMQ Kolkata computer and the noisy simulator is based
on this Kolkata device (see Fig. 6 for the coupling map
and Table VI for the error rates). Here we see that im-
provement factors range from µ ' 1 to µ ' 3 indicating
that error mitigation is still effective on larger problem
sizes. The improvement factors for (parallel) randomized
benchmarking circuits are higher than for mirror circuits
in all cases, likely due to the fact that mirror circuits con-
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FIG. 5: Improvement factor Eq. (5) results for n = 12
qubit experiments on both a quantum device and a
noisy simulator based on the IBMQ Kolkata computer
(see Fig. 6 for the coupling map and Table VI for error
rates).

tain two-qubit gates across all edges. This is somewhat
visible in n = 3, 5 qubit experiments but more accentu-
ated here due to the larger problem size, and suggests
that additional error mitigation on top of ZNE may be
necessary to mitigate errors and crosstalk effects in larger
applications. However, ZNE still performed better than
the unmitigated experiments in all cases.

IV. DISCUSSION

A. Positive features of our work

A positive aspect of our experiments is that we apply
error mitigation techniques “out-of-the-box”, i.e., we do
not tailor any techniques to the benchmark problems or
computers we consider. Indeed, all experiments were per-

formed with high-level API calls to quantum error miti-
gation software [LMK+20] (see Appendix B for more on
the implementation details). While tailoring techniques
to specific experiments are likely to provide better results
and is advisable in most applications, our approach gives
a picture of what can be expected from quantum error
mitigation in general applications.

Another positive feature of our work is the comparison
of results across several computers. This experimentally
verifies that error mitigation can indeed be viewed as an
algorithmic or software method independent of hardware,
but our results also emphasize that the performance of
error mitigation depends on the underlying computer. A
clear example that illustrates this is zero-noise extrapo-
lation with very deep circuits such that the final state is
approximately the maximally mixed state. In this sce-
nario scaling noise further does not produce any signal
from which one can extrapolate, so ZNE has no advan-
tage relative to no error mitigation. On a more accurate
quantum computer, however, the final state may not be
maximally mixed and noise may be able to be scaled with
small-scale factors. On the opposite limit, if a quantum
computer is already very accurate, the improvement fac-
tor due to error mitigation is necessarily small. In fact,
in the limit of very weak noise, the bias of expectation
values is negligible compared to the statistical variance
which is typically not reduced by error mitigation (actu-
ally it is often increased by it).

Beyond experimental results, our work introduces
a quantitative, problem-independent, and resource-
normalized measure of the improvement of quantum er-
ror mitigation, the improvement factor (namely, Eq. (5)).
This is a natural and empirically-motivated measure that
introduces a standardized metric for measuring and com-
paring error-mitigated quantum computer performance.
For this reason, we expect the improvement factor metric
to be used in other future experiments, beyond this work.
We have shown the relation of our metric to the metric
in [CDM+22] so that results can be compared, and we
encourage the use of quantitative metrics in future error
mitigation work to continue this effort. Finally, we incor-
porated the notion of normalizing by additional resources
(namely, shots) in our definition of the improvement fac-
tor, and experimentally showed error mitigation can still
be beneficial even when adjusting by these extra resource
requirements.

B. Limitations of our work

While the improvement factor defined in Eq. (5) nor-
malizes by additional shots used in quantum error mitiga-
tion, it does not normalize by additional qubits, gates, or
circuits. While the error mitigation techniques we used
in this work do not increase the number of qubits in ex-
ecuted circuits, other techniques do require more qubits
in executed circuits, and accounting for this resource is
important to understand the value of quantum error mit-
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igation.
In more detail, the techniques we use can increase both

the number of gates and different circuits executed in an
experiment. In particular, in ZNE the number of gates in
each circuit is primarily increased but the number of cir-
cuits is only slightly increased, while in PEC the number
of gates in each circuit is essentially the same as the orig-
inal circuit but the number of circuits to execute is sig-
nificantly higher. The optimal way to account for these
additional resources is not immediately obvious, for ex-
ample, whether to count additional circuits separately
or to only count the total number of gates in all cir-
cuits. Similarly, even if additional circuits use the same
number of qubits as the original circuit, they could be
executed simultaneously by using additional qubits, so
there is some subtlety concerning the most appropriate
way to normalize for these space-time tradeoffs. Ulti-
mately these questions are likely to depend on the par-
ticular computer being used, but the variety and flexi-
bility of available error-mitigating techniques should be
encouraging to builders and users of the many different
quantum computer architectures being proposed.

Another potential resource in quantum error mitiga-
tion is pre-processing / noise characterization. For ex-
ample, in PEC one needs to determine the noisy basis
of the computer, and in measurement error mitigation
one needs to characterize the confusion matrix. However,
these examples and others usually do not grow with the
size of the problem. Thus they are likely less important
to account for in the improvement factor. (Recall that we
assumed a particular noise model for PEC and did not
perform gate characterization, so pre-processing cost is
not present in our improvement factor results.) Apply-
ing “out-of-the-box” error mitigation techniques at the
gate level may be paired with tailored and more complex
noise models going beyond error calibration information
produced by hardware providers [SLM+22, BMKT22].

Although we experimentally evaluate quantum error
mitigation more generally than current literature (Ta-
ble I), we still considered just two error mitigation tech-
niques out of (roughly) dozens proposed in the litera-
ture. Additionally, both benchmark problems we used
are based on random circuits — while we expect our re-
sults to extend to structured circuits (say for time evo-
lution), this needs to be experimentally verified. Due
to limited device availability (i.e., which computers and
how much computer time we had access to), we were
only able to perform experiments on up to n = 12
qubits. This is fairly typical for error mitigation experi-
ments (Table I) and we used noisy simulators to test the
performance of error mitigation on larger problem sizes,
but experiments on larger computers are still desirable.
Last, we only considered experiments with a single er-
ror mitigation technique. Experiments composing two
or more error mitigation techniques, for example, zero-
noise extrapolation with dynamical decoupling and mea-
surement error mitigation, will likely yield the largest
improvement in applications. We leave quantifying this

improvement (again normalized by additional resources
used) and other points mentioned here for future work.

C. Relationship to literature

Our work adds a significant number of quantum er-
ror mitigation experiments relative the current literature
(Table I). Notably, our work introduces a quantitative,
problem-independent, and resource-normalized measure
of the improvement of quantum error mitigation, and
we compute this quantity on multiple quantum comput-
ers. With the notable exception [CDM+22], our work
goes significantly beyond most experimental studies of
quantum error mitigation which typically consider one
technique for a specific experiment and do not explicitly
evaluate a quantitative improvement of quantum error
mitigation.

D. Future outlook of QEM

Based on our results and other experiments in the lit-
erature using error mitigation, we expect quantum er-
ror mitigation to be an essential component of virtually
all experiments on “NISQ” computers [Pre18], where we
can take “NISQ” to roughly mean computers with up to
n ∼ 102 qubits capable of implementing d ∼ 103 two-
qubit gates. Indeed, depending on how much overhead is
required for error correction, error mitigation techniques
may continue to be important at even larger scales.

Abstractly, quantum error mitigation can be viewed
as combining NISQ computers with classical processors,
and we have shown that this combination is still benefi-
cial even when normalized by additional resources used.
This combination is likely to be most beneficial when ap-
plied to problems that are classically hard [AAB+19]. In
this setting, a quantum computer is used to get a rough
solution to a hard problem, and a classical computer is
used to improve the accuracy of the solution. We expect
that combining the strengths of both devices in this man-
ner will be necessary for solving problems too hard for
either device to solve individually.

Furthermore, it is likely that quantum error mitigation
will play an important role beyond NISQ computations,
namely in error-corrected computations. Although QEM
and QEC are sometimes thought of as separate tech-
niques due to their different resource requirements and
generality, they are similar in that both are algorithmic or
software techniques to deal with errors in quantum com-
puters. For example, dynamical decoupling — largely
considered to be a quantum error mitigation technique
in many settings — has been an important technique in
recent quantum error correction experiments [AI22] to
improve the fidelity of data qubits while syndrome mea-
surements are performed. Further, Ref. [SEFT22] pro-
vides a more theoretical discussion about the application
of quantum error mitigation in fault-tolerant quantum
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computing. We anticipate additional work connecting er-
ror mitigation to error correction at both the theoretical
and experimental levels. Our results and experimental
framework for obtaining these results [LMK+20] provide
some foundation for progress in this direction.

V. CONCLUSION

In this work we experimentally tested the performance
of quantum error mitigation. Using an empirically-
motivated metric that normalizes by the amount of ad-
ditional resources used in a quantum error mitigation
technique, we quantified the improvement of error mitiga-
tion using a variety of benchmark problems and quantum
computers. In particular, we tested zero-noise extrapola-
tion and probabilistic error mitigation on two benchmark
problems and three quantum computers. The largest of
such error mitigation benchmarks involved quantum cir-
cuits acting on 12 qubits with more than 100 two-qubit
gates and more than 600 single qubit gates. Our re-
sults show that error mitigation is on average more use-
ful than no error mitigation, even when normalizing by
the additional resources used and applying “out-of-the-
box” error mitigation — i.e., not tailoring the technique
to the specific benchmark problem or the specific quan-
tum computer. While these latter points are likely to
provide further improvements and are encouraged in ap-
plications, our results provide a general picture of what
can be expected of quantum error mitigation in practice.

Our definition of the improvement factor is, to our
knowledge, the first quantitative metric to normalize by
additional resources used in error mitigation, and we en-
courage the adoption of this or similar metrics in fu-
ture work. It is also of interest to expand this met-
ric for resources we do not account for here — for ex-
ample additional qubits and gates — to more fully un-
derstand and quantify the value of quantum error mit-
igation in real experiments. This also can be consid-

ered with error mitigation techniques we did not use
here — for example dynamical decoupling) [VKL99,
VL98, ZSBS14, PAFL18, DTDQ21], Clifford data regres-
sion [LGC+21, CACC21], and noise-extended probabilis-
tic error cancellation [MSZ21]. Additional experimental
and theoretical results of this nature will help to further
the progress made in this work and better understand the
value of error mitigation in the larger context of quantum
computing and quantum error correction.

Note added: While preparing our manuscript, we
noticed a recent review of quantum error mitiga-
tion [CBB+22] which is similar in scope but discusses
quantum error mitigation from a more theoretical rather
than experimental perspective as in this paper.

CODE AND DATA AVAILABILITY

Code and data are available upon reasonable HTTPS
request to https://github.com/unitaryfund/research/.
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Appendix A: Notation

A summary of notation is shown in Table IV.

Appendix B: Implementation details

In this appendix, we discuss the implementation of the
experiment and provide more details pertaining to how
these experiments were programmatically carried out.

1. Experiment setup

For a given experimental run, the user specifies
whether to run on a quantum hardware or simulator de-
vice, the platform to target (IBM, IonQ, or Rigetti) cov-
ered in B 3, the error mitigation method to apply (PEC
or ZNE) covered in B 4, and the circuit type to consider
(RB or mirror) covered in B 5.

https://github.com/unitaryfund/research/
https://github.com/unitaryfund/research/
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C Quantum circuit (unitary)
ρ Final state of circuit C, ρ = C|0〉〈0|C†

Â Hermitian observable
n Number of qubits
d Depth of circuit
N Number of shots (samples)
A Ideal expectation value tr[ρÂ]
E Channel of a noisy computer (simulator)
A′ Noisy expectation value tr[E(ρ)Â]

QEM A quantum error mitigation technique
AQEM Error-mitigated expectation value
NQEM Total number of shots used in the QEM technique
C A set of (benchmark) circuits
Â A set of (benchmark) observables

µQEM Improvement factor Eq. (5) of QEM technique
ZNE Zero-noise extrapolation

ZNE(L) ZNE with linear extrapolation
ZNE(R) ZNE with Richardson extrapolation
PEC Probabilistic error cancellation

TABLE IV: Summary of notation. Note: The number
of single-qubit and two-qubit gates in a circuit of depth
d depends on the circuit type — see Sec. II C.

Once we obtain either our RB or mirror circuit C, we
define an executor function that takes the input circuit
and returns an expectation value 〈A〉 where A = |z〉 〈z|
for each circuit and where z denotes the correct bitstring.

The circuits may contain gates that are not in the sup-
ported gatesets for the hardware device we are targeting
to run on. In this case, we compile the gates in the circuit
to gates in the supported gateset (more on this process
in B 5.)

We then loop over each Clifford depth and within this
loop, iterate over the number of trials we want to perform
at each depth. For each iteration within our trial, we cal-
culate the result of applying our error mitigation method.
The resulting data is saved. Further information on the
saved data can be found in B 2.

2. Software and experiment data

Our experiments were carried out using Python 3.9.
The error mitigation methods of PEC and ZNE were
applied via version 0.18.0 of the Mitiq Python soft-
ware package. The libraries Cirq (version 1.0.0),
amazon-braket-sdk (version 1.25.2), and Qiskit (ver-
sion 0.38.0) were used to specify the circuits for
our experiments. Further information on the Mitiq
package can be found on the official GitHub repos-
itory https://github.com/unitaryfund/mitiq as well as
in [LMK+20].

The data obtained from our experiments and used to
generate the plots in this work can be found in the data
directory

data/TYPE/QEM/CIRCUIT/PLATFORM/

where TYPE ∈ {hardware, software} de-
scribes whether the experiment was run on ei-
ther an actual quantum device or a simulator,
QEM ∈ {pec, zne} describes the error mitigation
method that was applied, CIRCUIT ∈ {mirror, rb}
describes the circuit type considered, and where
PLATFORM ∈ {ibmq, ionq, rigetti, depolarizing}
describes on which platform the experimental data was
obtained from.

Contained in each such directory is a subfolder with
the following form

PLATFORM_QEM_CIRCUIT_QUBITS_MIN_MAX_SHOTS_TRIALS

where QUBITS is the number of qubits used in the ex-
periment, MIN is the minimum Clifford depth, MAX is the
maximum Clifford depth, SHOTS is the total number of
shots used in the experiment (this is 10,000 for all of our
experiments) and TRIALS is the total number of trials
carried out per experiment (this is 4 for all of our exper-
iments).

In each such subfolder is a listing of files with the fol-
lowing prefixes:

• cnot_counts: The number of CNOT gates in the
circuit.

• noise_scaled_expectation_values: Noise-
scaled expectation values (for ZNE only).

• noisy_values: The non-scaled noisy expectation
values (prior to applying error mitigation).

• oneq_counts: The number of circuit instructions
(modulo the number of CNOT operations).

• true_values: The ideal values (these are always
equal to 1).

• mitigated_values: The error-mitigated values.

Each row represents the value obtained at the depth
corresponding to the index and each column represents
the data obtained for a given trial.

Running the software in [Uni22] that is responsible for
capturing quantum device hardware experiment data re-
quires possessing an AWS Braket account (for IonQ and
Rigetti) an an IBM Quantum account (for IBM). Run-
ning the software on exclusively quantum simulators can
be done without any such account access.

To run the software on a simulator device the variable
use_noisy_simulator should be set to True (and alter-
natively, False if the desire is to run on quantum de-
vice hardware). Setting the mitigation_type variable
to either pec and zne runs PEC or ZNE error mitiga-
tion, respectively. The type of circuit to use can be set
via the variable circuit_type to either rb for random-
ized benchmarking circuits or mirror for mirror circuits.
Specifying the target platform can be done by setting the
hardware_type variable to either ibmq, ionq, or rigetti
for IBM, IonQ, or Rigetti, respectively.

https://github.com/unitaryfund/mitiq
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FIG. 6: Coupling map for the 27-qubit IBMQ Kolkata
computer. We use this device (see Table VI for its
properties) to perform n = 12 qubit error mitigation
experiments on the red qubits. Results are shown
in Fig. 5.

3. Quantum computing device platforms

Access to the Rigetti Aspen-M2 and IonQ Harmony
hardware devices were provided via the Amazon Braket
service on AWS. Hardware information pertaining to
qubit topology, error rates, etc. were obtained via the
Amazon Braket API. Access to the IBM hardware Lima
device and IBM FakeLima and FakeKolkataV2 simulator
devices were provided by the IBM Quantum Compute
Resources page [IBM].

Qubit ε1Q εCX εM
0 9.028× 10−4 1.026× 10−2 2.740× 10−2

1 6.452× 10−4 1.083× 10−2 1.510× 10−2

2 6.016× 10−4 7.375× 10−3 1.700× 10−2

3 2.523× 10−4 1.570× 10−2 2.360× 10−2

4 6.167× 10−4 1.655× 10−2 4.410× 10−2

TABLE V: IBMQ Lima error rates for each qubit in the
coupling map from Fig. 1(c). Here, ε1Q, εCX, and εM
represent the single-qubit

√
X-gate error, the average

two-qubit CNOT error, and the readout assignment
error, respectively [IBM].

4. Error mitigation

The PEC and ZNE error mitigation methods were ap-
plied using the Mitiq software package.

a. ZNE

The Mitiq package employs local folding [GTHL+20]
and global folding [SLM+22] as gate-level noise scaling
methods for ZNE. In this work, we used global folding.

Qubit ε1Q εCX εM
0 1.640× 10−4 3.997× 10−3 1.820× 10−2

1 1.339× 10−4 5.737× 10− 1.850× 10−2

4 1.660× 10−4 6.636× 10−3 2.750× 10−2

7 2.027× 10−4 1.259× 10−2 2.270× 10−2

10 4.948× 10−4 1.397× 10−2 1.320× 10−2

12 2.380× 10−4 9.326× 10−3 8.500× 10−3

15 2.626× 10−4 4.086× 10−2 5.000× 10−3

18 2.248× 10−4 1.052× 10−2 6.200× 10−3

21 1.772× 10−4 6.663× 10−3 1.350× 10−2

23 2.221× 10−4 5.340× 10−3 8.100× 10−3

24 2.858× 10−4 5.027× 10−1 1.360× 10−2

25 5.048× 10−4 3.368× 10−1 6.600× 10−3

TABLE VI: IBMQ Kolkata error rates for each qubit
used in our n = 12 qubit experiments (see Fig. 6). We
use a noisy simulator based on these error rates to
perform experiments. Here, ε1Q, εCX, and εM represent
the single-qubit

√
X-gate error, the average two-qubit

CNOT error, and the readout assignment error,
respectively [IBM].

Qubit specs Edge specs
Qubit Readout fidelity Edge εCX

10 99.3% 10-17 3.79× 10−3

17 98.2% 10-113 4.58× 10−3

113 94.7%

TABLE VII: The Rigetti Aspen-M2 measures of the
average two-qubit CNOT error (εCX) for the qubit edge
and relative readout fidelity rates for the qubits in the
device that we use in our experiments. Accessed
from [Ama20].

1 import qiskit
2 from mitiq.zne.scaling import fold_global
3

4 # Define a quantum circuit.
5 qubits = qiskit.QuantumRegister (2)
6 circuit = qiskit.QuantumCircuit(qubits)
7 circuit.h(0)
8 circuit.cnot(0, 1)
9

10 # Apply global folding.
11 scaled_circuit = fold_global(circuit ,

scale_factor =3)

Listing 1: Apply global folding to a circuit in Mitiq.

Global folding increases the effective length of the
quantum circuit by compiling the input circuit with a
larger number of gates. Each set of layers in the circuit is
replaced by GG†G. Since GG† = I, in the case where we
are running our circuit on an ideal simulator this has no
effect on the circuit. However, in the case where one uses
a noisy device, this increases the noise and effective gate
errors of the computation. An arbitrary example that
depicts the global folding technique is shown in Fig. 7.

An example of how to make use of global folding in
Mitiq is provided in Listing 1 that makes use of λ = 3
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︸ ︷︷ ︸
G

︸ ︷︷ ︸
G

︸ ︷︷ ︸
G†

︸ ︷︷ ︸
G

FIG. 7: Example of the global folding technique applied
to an arbitrary circuit. For a given collection of gates
denoted by G, we increase the effective length of the
overall circuit by creating GG†G.

being a scale factor. Note that the smallest scale factor
one can select is λ = 1 that corresponds to not performing
any folding where selecting λ = 3 folds all of the gates
in the circuit. For any scale factors λ > 3 in Mitiq, this
folds some or all gates in the circuit.

For ZNE, we applied linear and Richardson extrapo-
lation methods provided as factory objects in Mitiq as
LinearFactory and RichardsonFactory, respectively.

1 from mitiq import zne
2

3 zne_value = zne.execute_with_zne(
4 circuit ,
5 execute ,
6 scale_noise=zne.scaling.fold_global ,
7 factory=zne.inference.RichardsonFactory

(scale_factors =[1, 2, 3])
8 )

Listing 2: Applying ZNE in Mitiq using Richardson
extrapolation with noise scale factors λi ∈ {1, 2, 3}.

b. PEC

To apply probabilistic error cancellation [TBG17,
EBL18, ZLZ+20] we use the associated Mitiq module.
We extract the two-qubit error probability p2Q from the
backend properties as reported by the hardware ven-
dor. We use this information together with the utili-
ties in mitiq.representations to generate the quasi-
probability representations for all the two-qubit opera-
tions acting on neighboring qubits of the quantum pro-
cessor. We store the result as a list (representations)
of mitiq.pec.OperationRepresentation objects. Af-
ter this preliminary step, we can obtain all the error-
mitigated expectation values as described in the next
code block.

1 from mitiq import pec
2

3 pec_value = pec.execute_with_pec(
4 circuit ,
5 execute ,
6 representations ,
7 num_samples=num_samples ,
8 random_state=local_seed ,
9 )

Listing 3: Apply PEC using Mitiq.

5. Circuits

In order to construct our RB circuits, we define an
RB pattern by splitting the qubits into 2-qubit pairs.
We then generate a generic RB sequence via the Qiskit
library. If the circuit is to be run on either Rigetti or
IonQ, we perform a conversion of the Qiskit circuit to a
Braket circuit.

1 import qiskit.ignis.verification.
randomized_benchmarking as rb

2

3 def get_circuit(depth , seed):
4 circuit = rb.

randomized_benchmarking_seq(
5 length_vector =[depth],
6 rb_pattern=rb_pattern ,
7 group_gates="0",
8 rand_seed=seed ,
9 )[0][0][0]

Listing 4: Defining RB circuits in Mitiq.

We generate mirror circuits via the
generate_mirror_circuit function from Mitiq.
Mirror circuits parameterize the number of random
Clifford layers to be generated.

1 from mitiq.benchmarks import
generate_mirror_circuit

2

3 def get_circuit(depth , seed):
4 circuit , correct_bitstring =

generate_mirror_circuit(
5 nlayers=depth ,
6 two_qubit_gate_prob =1.0,
7 connectivity_graph=computer ,
8 two_qubit_gate_name="CNOT",
9 seed=seed ,

10 return_type=return_type ,
11 )

Listing 5: Defining mirror circuits in Mitiq.

a. Circuit compilation

At the time of this writing, both Rigetti and IonQ
hardware support the option of verbatim compilation; a
method that directs the compiler to run the specified
circuit exactly as defined without adding any modifica-
tions. We attempt to disable automatic compilation by
the platform service or QPU providers in order to have
as much control as possible on the compiled circuit and
hence error mitigation scaling.

The usage of verbatim compilation requires that ev-
ery gate in the circuit is a gate that is natively sup-
ported by the hardware it is running on. For Aspen-M2,
the native gate set is {RX,RZ,CPHASE,CZ,XY}. In
our compile_to_rigetti_gateset function, we iterate
through every instruction in our circuit and compile all of
the gates into equivalent ones that are in the supported
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native gateset. As IonQ only recently added support for
verbatim compilation, we were not able to take advantage
of this option for the IonQ Harmony experiments.

b. Task batching

The AWS braket platform allows for task batching; the
ability to launch jobs in parallel. For the majority of our
experiments, serial execution within the allotted device
time windows were sufficient to carry out a complete run
of our experiment. One exception to this was the PEC
experiments on Rigetti and IonQ hardware. In order to
ensure these experiments ran within the allotted device
time window, we needed to make use of the batching
functionality.

6. Rotation barriers

Many hardware backends internally optimize circuits
before actually running physical gates on a quantum pro-
cessor. This can be a problem for some error mitigation
techniques. For example, in ZNE we want to run cir-
cuits whose depth is intentionally increased by unitary
folding G → GG†G (see Fig. 7). However, if the inter-
nal optimizer of a backend detects that G†G = I, it will
simplify the unitary folding structure such that any noise
scaling effect is lost. This is a relevant practical issue for
gate-level ZNE.

The best way to avoid this effect is to optimize circuits
before applying ZNE and to switch off any further circuit
optimizations on the backend side. When this is not pos-
sible, a simple workaround is the addition of barriers of
infinitesimal gates that generate a negligible unitary ef-
fect on the quantum state but that can block the action
of circuit optimizers.

In practice, in our experiments we apply ZNE by using

a slightly modified version of the unitary folding rule:

G→ GR1G
†R2G, (B1)

where G is the circuit acting on n qubits and Rj =
[Rx(εx,j)Ry(εy,j)Rz(εz,j)]

⊗n is the tensor-product of n
infinitesimal rotations. For each circuit block of the uni-
tary folding structure, we apply a rotation barrier. The
way in which the small rotation angles are chosen is
quite arbitrary as long as they are sufficiently small but
nonzero. In our experiments, we randomly sample be-
tween two fixed small angles (±10−4) as reported in the
next code block.

1 import cirq
2 import numpy as np
3

4 def make_rotation_barrier(
5 circuit ,
6 delta =0.0001 ,
7 ):
8 """ Returns a barrier of infinitesimal

rotations."""
9 qubits = list(circuit.all_qubits ())

10 delta_x = np.random.choice ([1.0 , -1.0])
* delta

11 delta_y = np.random.choice ([1.0 , -1.0])
* delta

12 delta_z = np.random.choice ([1.0 , -1.0])
* delta

13 barrier = cirq.Circuit ()
14 for q in qubits:
15 barrier.append(cirq.rx(delta_x)(q))
16 barrier.append(cirq.ry(delta_y)(q))
17 barrier.append(cirq.rz(delta_z)(q))
18 return barrier

Listing 6: Function returning a layer of infinitesimal
rotations. Each layer is applied as a barrier between
circuit blocks as shown in Eq. (B1).

Note that all our ZNE experiments on IonQ hard-
ware have been done via the AWS cloud platform before
verbatim compilation became available. Today verbatim
compilation of quantum circuits into native gates is sup-
ported for both IonQ and Rigetti devices. Therefore, the
workaround of applying rotation barriers is probably not
necessary anymore to reproduce similar experiments.
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Platform Computer QEM Extrapolation Circuit Qubits Simulator
IBM Lima ZNE Richardson RB 3 No
IBM Lima ZNE linear RB 3 No
IBM Lima PEC - RB 3 No
IBM Lima ZNE Richardson RB 5 No
IBM Lima ZNE linear RB 5 No
IBM Lima PEC - RB 5 No
IBM Lima ZNE Richardson Mirror 3 No
IBM Lima ZNE linear Mirror 3 No
IBM Lima PEC - Mirror 3 No
IBM Lima ZNE Richardson Mirror 5 No
IBM Lima ZNE linear Mirror 5 No
IBM Lima PEC - Mirror 5 No
IBM Kolkata ZNE Richardson RB 3 No
IBM Kolkata ZNE linear RB 3 No
IBM Kolkata ZNE Richardson Mirror 3 No
IBM Kolkata ZNE linear Mirror 3 No
IonQ Harmony ZNE Richardson RB 3 No
IonQ Harmony ZNE linear RB 3 No
IonQ Harmony PEC - RB 3 No
IonQ Harmony ZNE Richardson Mirror 3 No
IonQ Harmony ZNE linear Mirror 3 No
IonQ Harmony PEC - Mirror 3 No
Rigetti Aspen-M2 ZNE Richardson RB 3 No
Rigetti Aspen-M2 ZNE linear RB 3 No
Rigetti Aspen-M2 PEC - RB 3 No
Rigetti Aspen-M2 ZNE Richardson Mirror 3 No
Rigetti Aspen-M2 ZNE linear Mirror 3 No
IBM FakeLima ZNE Richardson RB 3 Yes
IBM FakeLima ZNE linear RB 3 Yes
IBM FakeLima PEC - RB 3 Yes
IBM FakeLima ZNE Richardson RB 5 Yes
IBM FakeLima ZNE linear RB 5 Yes
IBM FakeLima PEC - RB 5 Yes
IBM FakeLima ZNE Richardson Mirror 3 Yes
IBM FakeLima ZNE linear Mirror 3 Yes
IBM FakeLima PEC - Mirror 3 Yes
IBM FakeLima ZNE Richardson Mirror 5 Yes
IBM FakeLima ZNE linear Mirror 5 Yes
IBM FakeLima PEC - Mirror 5 Yes
IBM FakeKolkataV2 ZNE Richardson RB 12 Yes
IBM FakeKolkataV2 ZNE linear RB 12 Yes
IBM FakeKolkataV2 ZNE Richardson Mirror 12 Yes
IBM FakeKolkataV2 ZNE linear Mirror 12 Yes
AWS 1% depolarizing noise ZNE Richardson RB 3 Yes
AWS 1% depolarizing noise ZNE linear RB 3 Yes
AWS 1% depolarizing noise PEC - RB 3 Yes
AWS 1% depolarizing noise ZNE Richardson RB 5 Yes
AWS 1% depolarizing noise ZNE linear RB 5 Yes
AWS 1% depolarizing noise PEC - RB 5 Yes
AWS 1% depolarizing noise ZNE Richardson Mirror 3 Yes
AWS 1% depolarizing noise ZNE linear Mirror 3 Yes
AWS 1% depolarizing noise PEC - Mirror 3 Yes

TABLE VIII: Summary of experiments performed.
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