# The pretty bad measurement and optimal bounds for antidistinguishability

Nathaniel Johnston<sup>1</sup>, Vincent Russo<sup>2</sup>, Jamie Sikora<sup>3</sup>, Caleb McIrvin<sup>3</sup>, Ankith Mohan<sup>3</sup>

<sup>1</sup>Department of Mathematics and Computer Science, Mount Allison University <sup>3</sup>Department of Computer Science, Virginia Tech

Quantum State Discrimination

What is the Pretty Bad Measurement?

Perform the PGM and

randomly pick a different state.

Relationships

 $\mathcal{P}_{\text{PBM}} = \frac{1}{(k-1)} (1 - \mathcal{P}_{\text{PGM}})$  $B_i = \frac{1}{(k-1)} (1 - G_i) \quad \forall i \in [k]$ 

Helen selects  $\rho_i$  from  $\{\rho_1, \rho_2, \ldots, \rho_k\}$ with probability  $p_i$  and sends it to Bob.

Pretty bad measurement (PBM) operators are given by  $B_i \coloneqq P^{-1/2} \left( \frac{1}{k-1} \sum_{\substack{j \neq i}} p_j \rho_j \right) P^{-1/2}$ 

Quantum State Exclusion

Helen selects  $\rho_i$  from  $\{\rho_1, \rho_2, \ldots, \rho_k\}$ with probability  $p_i$  and sends it to Bob. Bob's task is to guess an index j that (k-1)-incoherence

<sup>2</sup>Unitary Fund

X is (k - 1)-incoherent if there exists a positive integer m and a set  $\{v_0, \ldots, v_{m-1}\}$  with the property that each  $v_i$  has at most (k-1) non-zero and scalars entries, real  $c_0, c_1, \ldots, c_{m-1} \ge 0$  for which

Bob's task is to figure out the index i.





The best Bob can do, denoted by  $\mathcal{P}_{\text{best}}$ , is given by



Motivating thought experiment

What is the worst Bob can do? In other words, how well can Bob do at





If Bob can play this game perfectly, i.e.,  $\mathcal{P}_{\text{worst}} = 0$ , then the set of states is said to be **antidistinguishable**.

### Motivation

Set of states is perfectly distinguishable

 $\Leftrightarrow$ 

Set of states is pairwise orthogonal



**Connection between** antidistinguishability and incoherence

> Set of *pure* states is antidistinguishable

 $\iff$ Gram matrix is (k-1)- incoherent

Antidistinguishability bounds

Inequalities

 $\mathcal{P}_{\text{best}} \ge \mathcal{P}_{\text{PGM}} \ge \frac{1}{k} + \frac{(1 - k\mathcal{P}_{\text{best}})^2}{k(k-1)}$ 

## the antigame? $\mathcal{P}_{\mathrm{worst}} = \min \sum^{k} p_i \langle M_i, \rho_i \rangle$

**Pretty Good** Measurement

Define  $P = \sum_{i=1}^{k} p_i \rho_i$ . The pretty good measurement (PGM) operators are defined as

 $G_i \coloneqq P^{-1/2} (p_i \rho_i) P^{-1/2}$ 

Why do we care?

Barnum and Knill [2000] showed that  $\mathcal{P}_{\text{PGM}} = \sum_{i=1}^{k} p_i \langle G_i, \rho_i \rangle$  approximates



#### Extreme cases

If  $\mathcal{P}_{\text{PBM}} = \mathcal{P}_{\text{worst}}$ , then  $\mathcal{P}_{\text{PGM}} = \mathcal{P}_{\text{best}}$ . The converse does not necessarily



#### Question

Is there an equivalent condition that can determine whether or not a set of states is **antidistinguishable**?

#### Reduced SDP

For a set of pure states  $\mathcal{S} = \{ \ket{\psi_0}, \ket{\psi_1}, \dots, \ket{\psi_{k-1}} \},$ we have the reduced primal-dual SDP pair:

Primal problem



Let  $k \geq 2$  be an integer.

• Upper bounds: If k-1 $\sum |\langle \psi_i | \psi_j \rangle| > k(k-2)$  $i \neq j = 0$ then  $\mathcal{S}$  is not antidistinguishable. (See also [1].)

• Lower bounds: If  $|\langle \psi_i | \psi_j \rangle| \le \frac{1}{\sqrt{2}} \sqrt{\frac{k-2}{k-1}}$ for all  $0 \leq i \neq j \leq k-1$  then  $\mathcal{S}$  is antidistinguishable.





#### Reference

[1] Somshubhro Bandyopadhyay, Rahul Jain, Jonathan Oppenheim, and Christopher Perry. Conclusive exclusion of quantum states. Physical Review A, 89(2):022336, 2014.

• Quantum state exclusion through offset measurement. Physical Review A, 110(4):042211, 2024.

• Tight bounds for antidistinguishability and circulant sets of pure quantum states. Quantum, 9:1622, 2025.

#### What does this SDP tell us?

The dimension of the states is irrelevant for the pure states case, the number of states and their inner products suffice to determine antidistinguishability.