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Chapter 1

Introduction

This thesis presents the theory and applications of Quantum Lindenmayer Systems (QL-

systems). One of the main contributions presented herein is a formalism of the concept

of Lindenmayer systems combined with concepts prevalent in quantum computation and

quantum information.

Lindenmayer systems (L-systems) are a mathematical and computational model (Lin-

denmayer 1968), (Rozenberg and Salomaa 1980). They are a conceptually simple, but

expressively powerful component of formal language theory (Sipser 1996). Their range

of applications have been primarily noted in the modeling of complex naturalistic sys-

tems (Prusinkiewicz, Lindenmayer, Hanan, Fracchia, Fowler, de Boer, and Mercer 1990),

but also include fractal generation (Prusinkiewicz and Hanan 1989), nanomachinery (Mc-

Gowan 2002), solving differential equations (Federl and Prusinkiewicz 2004), and many oth-

ers (Goel and Rozehnal ). In section 3 we shall formally define L-systems as well as provide

some practical examples of application.

While L-systems are undeniably useful at generating recursive structures and carrying out

many different tasks, they are limited by their physically classical implementation. That is

to say, L-systems abide and evolve by the classical laws of physics. While classical mechanics

may describe superbly the motion of macroscopic objects such as the growth of plants or

the evolution of cellular structures, it fails when presented with objects at the atomic scale.

To put it quite bluntly, classical physics is an incorrect interpretation of the world (Deutsch

1999). Hence systems embracing this theory cannot be entirely legitimate. Quantum theory

is currently the most accurate and complete description of physical reality known (Peres

1993). Therefore a tool abiding by classical preconceptions while attempting to model the

natural phenomena governed by quantum mechanics is bound to be restricted.
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Quantum computing and quantum information (§ 2) serve as the quantum mechanical

analogue to the classical theory of information and computation (Chuang and Nielsen 2000).

This relatively recent and bold academic frontier presents profound ideas that question the

very essence of information at the most fundamental scale. Furthering our understanding

of this blossoming field will no doubt lead to deep conclusions of how the universe evolves

and computes (Lloyd 2006). To study quantum computing is to study the computational

machinery of the universe and to uncover the source code of nature. The programming

language of choice for nature is assuredly written in quantum mechanics.

This section will present some of the prerequisite knowledge required for a basic un-

derstanding of fundamental quantum computational systems. We begin with the simplest

quantum system (a qubit § 2.1) and proceed to slightly more and more complex compu-

tational systems consisting of multiple qubits (a qubyte § 2.2). The “computing” portion

of quantum computing will be elaborated upon and emphasized, especially in § 2.4, when

potentially useful operations may be realized through the construction of quantum gates.

Quantum Lindenmayer systems or QL-systems (§4) provide the power and elegance of

Lindenmayer systems coupled with quantum mechanical behavior. In contrast to their clas-

sical counterpart, quantum L-systems offer a large number of favorable traits. The most

apparent of these, is that quantum L-systems are capable of modeling the evolution of quan-

tum systems. This is something that could not have been achieved with any classical variant

of a Lindenmayer system. We therefore are able to take advantage of the succinctness of an

L-system alongside scenarios involving evolutionary quantum systems.

Another quality which makes quantum L-systems favorable is their inherent parallelism

via superposition. To put this in context, consider the example of a tree. When a tree is

constructed from the rules governing an L-system, a pre-defined structure emerges. Yet, with

the power of quantum L-systems, all possibilities may be realized simultaneously through

a superposition of states. This powerful notion presents one with a method of obtaining

all the possibilities in one shot. Evolution of all physical systems is governed by quantum
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rules, not ones of classical intuition. Disregarding this fact is to dismiss a crucial element

prevalent in all evolutionary systems. The stunning variety found in the cosmos is a product

of quantum mechanically driven outcomes. Therefore it seems practical to infuse quantum

theory with what has until now been a classically based Lindenmayer system.

1.1 Quantum Analogues to Formal Grammar

Within the past few years, there has been a large dedicated area of research focused on

formulated quantum analogues to topics found in formal language theory. One of the earliest

and most prominent works on this topic by Moore and Crutchfield (Moore and Crutchfield

1997), provide the initial ingredients necessary for considering how classical grammars can be

extended to their quantum counterpart. In this work, extensions of grammars, push-down

automata, finite automata, and others were considered in the quantum case. While this

work did cover a considerable amount of ground, there was still much work to be done for it

to be considered a complete theoretical quantum computational model. In pursuant works,

various models of quantum finite automata were proposed and elaborated upon (Ambainis

and Watrous 2002) (Nayak 1999), as well as the continual development of quantum gram-

mars (Malyshev 2000). Prior still to the work noted above, David Deutsch was responsible

for initially proposing the quantum Turing machine model (Deutsch 1985). This work laid

the foundation of theoretical computer science within that of quantum computation.

The act of taking existent topics from theoretical computer science and formulating them

in a way that is conducive to quantum computing, has done much in the way of pushing

our study of quantum computation further along. Especially since quantum computers

are primarily a theoretical construct as of today, it makes the most sense to attempt to

understand them from a conceptual level before being able to go forth toward their physical

realization. The equivalence of quantum Turing machines and quantum automata have

aided tremendously in quantifying the complexity of certain hypothetical tasks that may

be performed on a quantum computer. It is with this same optimism that by considering
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the Lindenmayer system framework and extending it into the quantum domain, the field of

quantum grammars can be enriched and expanded.

1.2 Motivation

As the rate of transistors shrink to smaller and smaller sizes, classically based engineering

is left at a crossroads for the continuation of computational growth. As the scales reach lower

proportions quantum effects inevitably take place between the transistors, which presents

substantial obstacles for chip manufacturers. In the upcoming years, a paradigm shift toward

quantum mechanically based devices may prove useful to continue or surpass the exponential

growth in computing power as predicted by Moore’s law (Moore 1998).

Realizable quantum computers capable of surpassing the machines of today are still a

while off in the future. Despite this, theoretic efforts employed by academic institutions

around the world have provided a substantial foundation to this emerging technology. In

much the same stride as Alan Turing had done with his efforts on realizable computers (Tur-

ing 1950), the collective efforts of today bring realizable quantum computing closer to reality.

As a result of the relative immaturity of the field today, there exists much to be done. Pro-

viding further models, elaborations, extensions, etc. from the classical world to the quantum

one will not only deepen our understanding of this new frontier, but also prove potentially

useful in the eventual construction of these machines. Lindenmayer systems have proven to

be successful entities at modeling various complex structures. Their study and comprehen-

sion have yielded deeper understanding of L-systems as practical tools as well as illumination

on the modeled systems themselves.

Their formal control mechanisms and propensity to mimic diverse systems with concise

notation have made them a valuable tool in a number of scientific disciplines. Considering

their extension into the quantum realm serves to benefit both fields. For L-systems, this

extension provides a more diverse expressive palette in which quantum mechanically evo-

lutionary based systems may be created. For quantum computing, this contributes to the
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theoretic cumulative growth of knowledge to optimistically serve as a practical abstraction.

Theoretic parallels have already been drawn from the classical notion of formal language

and grammar to the quantum case. This contribution of incorporating L-systems into the

framework stands to make this an even richer collection of material.

By utilizing the underlying strengths inherent in the L-system framework, this work

provides a quantum mechanically derived tool for scientific development and visualization

of numerous quantum systems. A significant number of examples provided herein hint at

even further extrapolations not covered in this work. In addition, the specific formulation

and notation of conventional L-systems are catered toward a quantum computational model.

This extension allows us to grow circuits and systems based on the framework of quantum

mechanics.

As quantum computing progresses closer to reality, possessing a diverse and expansive

toolbox will be vital in developing this mode of computation. The role that Lindenmayer

systems play in this progressive field may prove to be useful and at the very least intellectually

stimulating. L-system, as initially conceived by Aristid Lindenmayer were exceptionally

limited in scope. They were simply a framework used to represent the growth of simple

organisms. Since that time, however, they have blossomed into much more than anyone

would have expected from such humble beginnings. The fields affected by their expanse

are numerous and stretch far beyond biology. In the same way, an L-system based on the

fundamental rules of quantum theory assuredly have, application to the tasks at hand, but

also perhaps for relatively unrelated fields and disciplines.
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Chapter 2

Quantum Computation and Quantum Information

“Information is physical.”

– Rolf Landauer

Quantum computing is a blossoming field that blends components from both computer

science and physics into a combined entity (Nielsen, Chuang, and Grover 2002). In a nut-

shell, quantum computing is the process or study of manipulating data and information

through quantum processes (Vedral 2006). This union of disciplines harbors numerous po-

tential benefits realizable in the fields of computer science (?), physics (Feynman 1982),

and beyond (Lent, Tougaw, Porod, and Bernstein 1993),(Schumacher 1995). Already there

have been very admirable approaches to physically attainable quantum computers by the

scientific community (Andrew 2009). These approaches have taken the form of constructing

superior quantum algorithms (Shor 1999), (Grover 1996) all the way to simulating quantum

circuits (Viamontes, Markov, and Hayes 2009). Quantum information is novel in the sense

that it relies on quantum mechanical phenomena including superposition, entanglement, etc.

to successfully perform computations. This unique form of manipulating information will be

of distinct importance when considering the connection with L-systems. When L-systems

model quantum behavior, they must abide by the laws of quantum theory and hence must

be adept at adequately dealing with these quantum mechanical traits.

This chapter contains a primer for quantum computing and quantum information. We

begin in §2.1, by describing the simplest quantum system, a qubit, and proceed to consider

slightly more abstract configurations as the systems take on additional complexity in §2.2.

We shall view some of the integral postulates of quantum mechanics and observe how they

relate to their computational implementation. A strong emphasis will be focused on relating
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the subject matter to computationally themed analogies to aid the reader to develop a

more robust intuition for approaching and incorporating quantum mechanics and computer

science. For instance, in §2.4 we describe the quantum mechanical equivalent of classical

logic gates.

However, many of the concepts found in quantum theory simply have no classical analogy

that adequately describe the proposed quantum behavior. Specifically, unique quantum

mechanical properties such as the spin of a particle or entanglement of qubits have no classical

way to relate or describe them. With this in mind we progress cautiously, reminding the

reader to acknowledge an analogy as just that, an analogy. This section will contribute the

second piece necessary for analyzing quantum Lindenmayer systems and provide the final

piece necessary before contemplating their structure.

2.1 The Qubit

In the classical world of computation, a bit is the fundamental unit of information de-

scribing a two-dimensional system. This system can attain a value of either 0 or 1, true or

false, off or on, etc. In quantum computing, a qubit (quantum bit) is a unit of quantum

information which serves as the quantum analogue for the classical bit (Schumacher 1995).

Just as the two possible states for a bit are 0 and 1, the states for a qubit are defined as |0〉

and |1〉. This notation of |·〉 is referred to as Dirac notation and is used quite frequently in

quantum mechanics. When something is enclosed within |·〉 it denotes it as a vector residing

in a vector space. In fact this vector space has a special name referred to as a Hilbert Space.

We shall use the terms vector space and Hilbert space interchangeably when speaking of

quantum computing. For our purposes of quantum computation, a Hilbert space H is a

finite-dimensional complex vector space where qubits reside. In the case of |0〉 and |1〉, we

have:
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|0〉 =

 1

0

 , |1〉 =

 0

1

 .
(2.1)

Unlike classical bits which must be in state a of 0 or 1, a qubit may attain a state other

than |0〉 or |1〉. This implies that a qubit can be written as a linear combination of |0〉 and

|1〉 as

|ψ〉 = α|0〉+ β|1〉 (2.2)

where |ψ〉 is the state of the quantum system, and α, β ∈ C are associated probability

amplitudes. This linear combination is referred to as a superposition of states which refers

to the quantum mechanical property of occupying all the possible quantum states simulta-

neously. This trait specifically will be important when considering the power of quantum

Lindenmayer systems.

If we wish to know the outcome of a classical computation, we simply examine a classical

bit and see if the output corresponds to the state 0 or 1. In quantum computing, and more

generally quantum mechanics, when we measure the quantum system in the standard basis

we obtain a probabilistic result dependent on the associated probability amplitudes of α and

β as in equation (2.2). That is to say, the probability of obtaining result 0 is |α|2 and of

obtaining 1 is |β|2. Based on the laws of probability |α|2 + |β|2 = 1 since the probabilities

must sum to one. Prior to any observation however, the qubit may exist between |0〉 and |1〉

in a continuum of states.
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Figure 2.1: Geometric representation of a qubit via the Bloch sphere.

A qubit may be geometrically represented by a three-dimensional figure called the Bloch

sphere as shown in Figure 2.1. This figure provides a succinct way to graphically represent

operations on single qubits. Points on the surface of the sphere refer to pure states, while the

interior points refer to mixed states. In quantum physics, a quantum state may be either pure

or mixed. A pure quantum state, like |ψ〉 in equation (2.2), is a state that is known exactly

and can be described as a single ket. A mixed state is a statistical mixture or combination of

pure states dictated by a random procedure. Unlike the pure state, the mixed state cannot

be written as a single ket.

Notice that the poles of the Bloch sphere correspond to the ket vectors |0〉 and |1〉.

When a qubit is measured, it collapses to either one of the two pole states. A single qubit

of the form (2.2) may be projected onto the surface of the sphere by setting α = cos θ
2

and

β = eiϕ sin θ
2
. The pure state of the qubit on the sphere is therefore written as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
(2.3)
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where (θ, ϕ) are spherical polar coordinates mapping to a point on the unit sphere.1 The

numbers θ and ϕ are bounded by 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.

Geometric manipulations upon the sphere serve as a way to visualize a single qubit

operation represented by any 2 × 2 unitary matrix. The renowned Pauli-matrices denoted

as σx, σy, and σz are such 2× 2 unitary matrices, which have the ability to rotate the qubit

by 180◦ along the x, y, and z axes, respectively. The Pauli-matrices are especially useful and

quite ubiquitous in the field of quantum computation and information as we shall see.

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1


(2.4)

Notice that σx is equivalent to the NOT gate in classical computing. When σx is applied

to the sphere as a 180◦ rotation about the x axis, the poles of the qubit are flipped which

constitutes as a quantum NOT operation. Hence, σx maps |0〉 → |1〉 and |1〉 → |0〉. The

relative effects of each Pauli-matrix on qubit |0〉 or |1〉 are shown below.

σx : |0〉 → |1〉 (2.5)

|1〉 → |0〉

σy : |0〉 → |1〉 (2.6)

|1〉 → −|0〉

σz : |0〉 → |0〉 (2.7)

|1〉 → −|1〉

There exist scenarios where flipping the Bloch sphere by the full 180◦ as allowed by the

Pauli matrices is not required. Instead, one may wish to turn the Bloch sphere by some

1In actuality, a single qubit may be written as |ψ〉 = eiγ
(
cos θ2 |0〉+ eiϕ sin θ

2

)
, but the phase factor term

eiγ may be eliminated because it has no observable effects and can therefore be written in the form (2.3)

(Chuang and Nielsen 2000).
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arbitrary degree θ in a certain direction. This can be achieved through the use of a phase

shift gate as shown in (2.8). In addition to turning the sphere by some θ, one may wish to

rotate it a specific number of degrees about the x, y, or z axis. This may be accomplished

through the rotation matrices (2.9), (2.10), and (2.11).

R(θ) =

1 0

0 eθ


(2.8)

Rx(θ) = cos
θ

2
I − i sin

θ

2
X =

 cos θ
2
−i sin θ

2

−i sin θ
2

cos θ
2


(2.9)

Ry(θ) = cos
θ

2
I − i sin

θ

2
Y =

cos θ
2
− sin θ

2

sin θ
2

cos θ
2


(2.10)

Rz(θ) = cos
θ

2
I − i sin

θ

2
Z =

e−iθ/2 0

0 eiθ/2


(2.11)

The Bloch sphere serves as an invaluable tool to visualize and manipulate qubits. By

utilizing the Bloch sphere one can attain an in-depth understanding of how single qubit

operations are carried out. In order to perform non-trivial quantum computations, however,

we must extend our understanding to incorporate multiple interacting qubits. Unfortunately

this extension does not have an equally succinct geometric analog, but can be comprehended

through relatively basic matrix calculations. While manipulating multiple qubits may run

counter to our classical intuition, the next section will attempt to elucidate the mystery and

present a general mathematical framework to aid our understanding.

2.2 Multiple Qubits

So far we have only considered systems capable of manipulating one qubit. While this

is interesting in its own right, it’s quite difficult to do anything of significance with a single
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qubit. Just as in classical computation, we are limited in practical computations confined to

one bit. We must therefore consider how these quantum systems interact with one another

to perform a pertinent quantum computation.

For a system consisting of multiple qubits, {|ψ1〉, |ψ2〉, · · · , |ψn〉}, the joint state of the

total system is |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 where “ ⊗ ” is defined as the tensor product. The

tensor product is a relatively simple operation where each component in the first matrix is

multiplied by every one of the components in the second matrix. This is shown visually

below:

a b

c d

 ⊗

e f

g h

 =



ae af be bf

ag ah bg bh

ce cf de df

cg ch dg dh


.

(2.12)

The tensor product also serves as a way to combine Hilbert spaces together. Suppose we

have two distinct Hilbert spaces Hn
1 and Hm

2 consisting of n and m dimensions, respectively.

Then Hn
1 ⊗ Hm

2 produces an mn-dimensional Hilbert space. As a notational forewarning,

the tensor product may be written as |ψ〉|ϕ〉, |ψ, ϕ〉 or |ψϕ〉 for some arbitrary vectors |ψ〉

and |ϕ〉.

If we consider a specific case concerning a two-bit classical system, we know that the

possible states that the system may attain are 00, 01, 10, and 11. Analogously, a two-qubit

system is comprised of four computational basis states represented as |00〉, |01〉, |10〉, and

|11〉. The qubits may achieve any one of these or a superposition of these states. Describing

the state of a two-qubit system is similar to the way we did so when describing a single

qubit § 2.2.

|ψ〉 = α1|00〉+ α2|01〉+ α3|10〉+ α4|11〉 (2.13)
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Just as before, the αn scalars refer to specific probabilities associated with the realization

of its respective computational basis state.

In section §2.1, when describing the geometric visualization of a qubit, we had the con-

venient representation of the Bloch sphere that aided in our understanding of single qubit

operations. Unfortunately when attempting to visualize quantum systems consisting of two

or more qubits, there is not an equally simplistic geometric model by which to imagine them.

There does exist a higher-dimensional analog of the Bloch sphere for visualizing multi-qubit

systems, yet comprehending its structure from a geometric perspective requires some visual-

ization acrobatics. Therefore, when considering quantum systems containing more than one

qubit, we shall primarily describe them through the language of mathematics.

A vector that can be written as the tensor of two vectors is referred to as separable, while

a vector that cannot be written as the tensor of two vectors is called entangled.

2.3 Time Evolution of Quantum Systems

We now consider how a quantum system evolves in time. The time evolution of a closed

quantum system is given to us by transformations of unitary matrices. A unitary matrix is

formally defined as an n× n complex matrix denoted U that satisfies the equality (2.14)

U †U = UU † = In (2.14)

where U † is the adjoint and In is the n-dimensional identity matrix. Notice that the

above equation portrays a fundamental notion of unitary matrices and quantum mechanics.

Namely, the unitary matrix U can be “undone” or reversed by applying the U † matrix. For-

mally it can be stated that U †U = I implies U † = U−1 where U−1 is the inverse of U . In

quantum mechanics, all actions upon a quantum system (with the exception of measurement

which disturbs the system) are inherently reversible. The evolution of a quantum system is

strictly governed by applied unitary matrices. Moreover, also note that the set of unitary
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matrices consist of the unitary group. That is to say, the product of two unitary matrices is

unitary, the inverse of a unitary matrix is also unitary, and identity matrices are unitary for

any dimension.

If the state of a closed quantum system at time t1 is denoted as |ψn〉, and at time t2

is denoted as |ψn+1〉, then they are related by some unitary transformation U which is

dependent on t1 and t2 as shown by equation (2.15). This equation is referred to as the

evolution postulate of quantum mechanics and serves as a description for how a physical

quantum system changes in time.

|ψn+1〉 = U |ψn〉 (2.15)

Let us consider an example to illustrate the above equation. If we take our basic quantum

system of |ψ〉 = α|0〉+ β|1〉, we may rewrite it in vector notation as:

|ψ〉 =

 α

β

 .
(2.16)

This will serve as our |ψn〉 in equation (2.15). For the unitary matrix U we are free to use

any unitary matrix we please. Now that we have our |ψ〉 and U variables, we simply need to

carry out the calculation to arrive at |ψn+1〉. For instance, we may use the unitary Pauli-X

matrix described in the previous section and apply it to state |ψ〉.

σx

 α

β

 =

 β

α


(2.17)

The next section will elaborate on further unitary matrices frequently used throughout

the literature. This will add to our toolbox for considering various states of evolution for

typical quantum systems.
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2.4 Quantum Gates

We have already touched on the notion of quantum gates in the preceding sections. The

Pauli-matrices previously mentioned serve as some of the simplest quantum computational

gates that can act upon a single qubit. In short, a quantum gate is simply defined by some

unitary operator U , that transforms some quantum state |ψ〉 into a new unique quantum

state U |ψ〉. In general, any 2n × 2n unitary matrix can serve as a valid quantum gate to act

upon n qubits. Some of the most frequently used quantum gates for single qubits appear in

Figure 2.4.

Figure 2.2: Some of the most frequently used quantum gates.

Suppose we wanted to apply the Hadamard gate to the states |0〉 and |1〉. This can be

represented by the equation (2.18). Note that when we apply the Hadamard gate on the

result obtained from (2.18), we arrive back at our initial state as shown in (2.19). This

behavior demonstrates a property of the Hadamard gate that H = H−1 or that H is self-

inverse. The rest of the quantum gates in Figure 2.4 can be applied in a similar manner to
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an arbitrary qubit for various outcomes and relative rotations among the Bloch sphere as

discussed in §2.1.

H|0〉 =
1√
2

(|0〉+ |1〉)

H|1〉 =
1√
2

(|0〉 − |1〉). (2.18)

H

(
1√
2

(|0〉+ |1〉)
)

= |0〉

H

(
1√
2

(|0〉 − |1〉)
)

= |1〉 (2.19)

The Hadamard gate serves as a staple in performing a significant selection of quantum

algorithms (Lomonaco Jr 2009). This gate specifically maps a set of qubits to an equal

superposition state. This essentially means that when applied to a qubit, the potential

outcome of any basis state is equally likely.

H|0〉 =

 1√
2

1√
2


(2.20)

If we measure the quantum system at this point, by taking the magnitude of the amplitude

squared, we see that each potential state has a | 1√
2
|2 = 1

2
probability of achieving either

state. Typically, this is a first step in numerous quantum algorithms, including Shor’s

algorithm (Shor 1999) and Grover’s search algorithm (Grover 1996).

The gates provided in Figure 2.4 are valid only when considering single qubit systems.

In order for us to operate on an arbitrary set of n-qubits, we must construct an adequately

sized vector space. This scenario may be remedied by considering the previously mentioned

tensor product. As an example of this, if we wanted to apply the Hadamard gate to a

register consisting of two qubits, we would simply compute the tensor product of two one-

qubit Hadamard gates.
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 1√
2

1√
2

1√
2
− 1√

2

⊗
 1√

2
1√
2

1√
2
− 1√

2

 =



1
2

1
2

1
2

1
2

1
2
−1

2
1
2
−1

2

1
2

1
2
−1

2
−1

2

1
2
−1

2
−1

2
1
2


(2.21)

This product provides us with an adequately sized vector space on which to operate. We

can extrapolate this concept and generalize that in order to represent n qubits; we simply

need to tensor n − 1 single qubit gates together. Considering a register of n-qubits, the

resulting size of the state vector describing the system is 2n. This is one of the fundamental

reasons why simulating even modest quantum systems using classical hardware is notoriously

difficult to achieve (Viamontes, Markov, and Hayes 2009).

This section has provided a very brief and basic overview of some of the fundamental

constituents of quantum mechanics. We shall use what we have covered in the following

sections when we consider the quantum mechanically oriented setups via Lindenmayer sys-

tems. All of the systems covered are simplistic relative to quantum mechanics and quite

elementary to comprehend from material provided here. Of course, a deeper understanding

of quantum mechanics and quantum information would be beneficial, but not necessary. The

interested reader is directed toward the following sources for further elaboration and areas

of application (Nielsen, Chuang, and Grover 2002), (Viamontes, Markov, and Hayes 2009).
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Chapter 3

Lindenmayer Systems

“Life, finds a way.”

– Ian Malcolm

Lindenmayer systems are a parallel string rewriting system introduced by the theoretical

biologist Aristid Lindenmayer (Lindenmayer 1968) to model the growth of various types of

multi-cellular organisms. They were later extended to graphically model the more complex

structures of plant growth (Prusinkiewicz, Lindenmayer, and Hanan 1988). These initial

applications laid the framework for what is currently a rich biological and computational

tool for modeling numerous types of evolving systems. They have since been augmented to

accommodate a diverse set of uses, many of which transcend the originally intended field

of biology. Such uses include performing mathematical computations, cryptology (Goel and

Rozehnal ), remote sensing and even musical composition (?? ), weaving (Goel and Rozehnal

1991), and architecture (Goel and Rozehnal 1991) to name but a few.

This vast flexibility of L-systems are attributed to a number of unique features. One

such feature is that of simplicity. Through the language of Lindenmayer systems, one may

convey fantastically complex fractal patterns, for instance, via a set of simplistic rules. The

rules that are responsible for generating these structures are typically concise, compact, and

accessible. Another trait prevalent among L-systems is variety. As we shall see in §3.2.1,

manipulating a small portion of the rules governing the system will present an enormous

variance in outcome. The last attribute is universality. Universality implies that the notions

found in L-systems may be abstracted to problems of varied disciplines. These features

are but a few of the several that make L-systems an indispensable tool for an innumerable

number of applications.
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In this section we will provide a formal definition of Lindenmayer systems (§3.1 ) as well

as extrapolate the general concept to countless adaptations (§3.2 ). These other adapted

versions will illustrate that L-systems are indeed a flexible tool that may be used in a wide

array of scenarios. We shall also cover how to interpret the string output from an L-system

to generate a broad set of geometric patterns (§3.2.1 ). This ability has proved to be useful

in disciplines ranging from simulating naturalistic systems (Prusinkiewicz and Hanan 1989)

to computer graphics (Prusinkiewicz and of Regina. Dept. of Computer Science 1985),

(Prusinkiewicz, Lindenmayer, and Hanan 1988). This section will present us with the initial

foundation to allow us to consider a quantum Lindenmayer system.

3.1 Preliminary L-systems

Lindenmayer systems are formally described as follows:

Definition 1 Classical L-Systems can be defined by the tuple: G = 〈V, ω,P〉 where:

• V ( The Alphabet) – A set of symbols containing non-terminal elements of which are

replaced in parallel.

• ω ( Axiom) – The initial state of the system, where ω ∈ V ,

• P ( Production Rules) – For some alphabetic symbols A,A′ ∈ V , a production rule of

the form (A → A′) is defined, where A is denoted as the predecessor and A′ as the

successor. That is to say that variable A is replaced by the successor A′. Both A and

A′ may be arbitrarily long, i.e. A = (A0, A1, · · · , An) and A′ = (A′0, A
′
1, · · · , A′n). The

production rules are performed in parallel as the system iterates.

This definition provides us with the string rewriting L-system. We are able to graphi-

cally represent the resultant string generated via the L-system with the use of turtle graph-

ics (Abelson and DiSessa 1986). The turtle acts as a cursor on the screen and carries out
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the instructions provided by the Lindenmayer system. In Figure 3.1, we observe a collec-

tion of well-known fractal patterns and their corresponding L-system production rules for

generation. The turtle is able to act as an intermediary to interpret what the L-system

generates, and display the graphical representation on the screen. In this way, an entirely

new dimension of interpreting information from these systems becomes available to us.

Figure 3.1: A group of fractal patterns generated via Lindenmayer systems with their re-

spective production rules.

In Figure 3.1, the symbols “F” and “X” both mean “draw forward” by some predefined

length. The characters “+” and “-” denote turning either left or right respectively by

the designated specified angle θ. Having a graphical way of interpreting the output from

Lindenmayer systems opens many new doors to visually simulating various facets of nature to
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a higher degree of detail (Prusinkiewicz, Lindenmayer, Hanan, Fracchia, Fowler, de Boer, and

Mercer 1990). This will in turn aid us in our attempt to model various quantum mechanical

experiments and visually appreciate and interpret the resulting graphical output.

3.2 Types of L-systems

To begin to obtain a glimpse of the sheer scope of L-systems, we must consider new

variations on the original model. The following list provides a brief overview of the main

types of L-systems encountered in literature (Lindenmayer 1968) (Rozenberg and Salomaa

2001).

• Deterministic (D0L-systems)

In a deterministic L-system, a predecessor p is always replaced with the same successor

s. This means that any word is present only once on the left side of a production rule.

For example, (3.1) is a valid D0L-system, while (3.2) is not because A appears twice

on the left side of a production rule.

Valid D0L-system (3.1)

A→ AB

B → B

Invalid D0L-system (3.2)

A→ AB

A→ BA

B → B

D0L-systems have been used to model the growth rates of algae and generate a large

set of fractal patterns in addition to numerous other applications.
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• Context-Free (0L-systems)

Context-free L-systems assume the form of the invalid D0L-system (3.2). More pre-

cisely, a predecessor p is not limited to only one successor, s. In the case of (3.2), we see

that A has two possible derivations which constitutes as a perfectly valid 0L-system.

• Context-Sensitive (IL-systems)

The rules of a context-sensitive system are dependent on the context of where the

predecessor p is located. A IL-system may have context-sensitive variables on either

side of p, or both, which are referred to as 1L and 2L systems, respectively. An example

of each is provided in equations (3.3) and (3.4):

1L-system (3.3)

contextL < p > ∅ → s

∅ < p > contextr → s

2L-system (3.4)

contextL < p > contextr → s

As an example of application, one could simulate the propagation of a signal through

some medium the use of this L-system as follows:
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L-system for Signal Propagation: (3.5)

Axiom : baaaa

Rules : p1 : b < a→ b

p2 : b→ a

Output for L-system (3.5) (3.6)

n0 : baaaa

n1 : abaaa

n2 : aabaa

n3 : aaaba

n4 : aaaab

• Stochastic L-systems

In a stochastic or non-deterministic L-system, rules are applied based on an associated

probability for the rule to be performed. The combined probabilities of all productions

with the same predecessor must sum to one. An example is provided in (3.7) where,

A → B has a 50% probability of occurring, A → AB has a 20% chance of occurring,

and so on.
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Stochastic 0L-system (3.7)

A
50%→ B

A
20%→ AB

A
15%→ BA

A
15%→ A

A stochastic 0L-system such as the one shown above may be formally defined by the

tuple Gπ = 〈V, ω, P, π〉, where V , ω, and P remain unchanged from (1), and π is a

probability distribution function. This function is a probabilistic mapping π : P →

(0, 1] that maps the production rules to a set of probabilities.

• Parametric L-systems

Parametric L-systems were introduced by Lindenmayer as a way to associate numerical

parameters with L-system symbols (Prusinkiewicz and Hanan 1989). They consist of

a structure abiding by the following syntax:

predecessor : condition → successor

The predecessor is some function A(a1, a2, · · · , an) consisting of n parameters. The

condition logically analyzes the argument passed through the parameter(s) and exe-

cutes the sucessor if the condition evaluates to true. An example of this format is

provided in (3.8).

A(a) : a <= 10→ A(a+ 2 ∗ 5 ∧ a) (3.8)

The parametric structure observes standard syntactically correct logical arguments,

and supports sound logical, arithmetic, etc. expressions. A slightly more in-depth

example is provided in (3.9) for completeness.
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Parametric Lindenmayer System: (3.9)

Axiom : A(4)B(2, 3)

Rules : p1 : A(x) : x <= 2→ A(x)

p2 : A(x) : x > 2→ A(x+ 2)

p2 : B(x, y) : y <= 3→ B(x+ y, x+ 5)A(x− 2)

p2 : B(x, y) : y > 3→ B(x ∗ 5, y ∗ 3)

Parametric Lindenmayer systems offer more versatility by allowing easier quantification

of attributes for the entities they are modeling. This extra level of control has been

used to model and visualize plants (Goel and Rozehnal ).

3.2.1 Visualizing L-systems

Up to this point, the result of executing an L-system has yielded strings of varying length.

However, the true beauty and elegance of what L-systems are capable of are the graphical

interpretations of these strings (Falconer and Wiley 2003). In order to geometrically inter-

pret the strings generated by an L-system, we need to introduce a few new symbols in the

alphabet along with the concept of turtle graphics (Abelson and DiSessa 1986). The turtle

is represented on a Cartesian plane by the triplet (x, y, θ), where x and y are the turtle’s

position along the x and y-axis, and θ is the angle or direction the turtle is facing. From an

arbitrary starting point (x, y, θ), the turtle may move on the Cartesian plane by the rules

presented in Table 3.2.1.

In Figure 3.2, we graphically interpret a single iteration of the F → F, F → [F], F

→ -F, and F → +F Lindenmayer systems. These systems may, of course, be extended to

create more complex geometrical patterns by incorporating more variables, invoking further

iterations, etc. For instance, fractals are very easily generated by simple specific combinations
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Symbol Rule

F Move the turtle forward by some prescribed

length `. A line segment is drawn from the

initial coordinates of the turtle, (x, y, θ) to

(x′, y′, θ).

f Move the turtle forward by some prescribed

length `. A line segment is not drawn be-

tween points (x, y, θ) and (x′, y′, θ).

+ Turn the turtle left by some angle δ. A line

segment is drawn from (x, y, θ) to (x, y, θ+δ)

- Turn the turtle right by some angle δ. A line

segment is drawn from (x, y, θ) to (x, y, θ−δ)

[ The current state of the turtle (x, y, θ), is

pushed onto a stack.

] A state previously pushed onto the stack by

“[” is popped off and becomes the current

state of the turtle.

Table 3.1: Symbols and rules for the graphical interpretation of the turtle.
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of the rules already provided. As an example, we shall examine the Koch curve. This shape

can be constructed by a simple recursive process described by the Lindenmayer provided in

Figure 3.3.

Figure 3.2: Graphical interpretation of separate Lindenmayer systems run for one iteration

with rules F → F, F → [F], F → -F, and F → +F. The end position is denoted by the

turtle in each result.

The first iteration of n = 0 is clearly just the forward movement of the turtle as shown

by the straight line. The following iteration of n = 1 is a single execution of the rule F+F-

F-F+F. The next iterations for n = 2, n = 3, up to any n progress in the same fashion by

rewriting the previous set of rules and replacing them with the current rule set.

Figure 3.3:
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Figure 3.3: Execution of Lindenmayer system F → F+F-F-F+F generates the Koch Curve.

The first four iterations are displayed in this figure.

String Output for L-system in Figure 3.3 (3.10)

n0 : F

n1 : F+F-F-F+F

n2 : F+F-F-F+F+F+F-F-F+F-F+F-F-F+F-F+F-F-F+F+F+F-F-F+F

n3 : · · ·

(3.11)

Of course the Koch curve is one of many fractal patterns that can be generated by turtle

graphics. In Figure 3.4, the elementary L-system with production rule F→ F+F provides

an immense amount of diversity by simply altering the angle θ. These seemingly complex

looking shapes are governed by exceedingly elementary rules.

Figure 3.4: A selection of arbitrary patterns, all created by Lindenmayer system F → F+F

and run for 6 iterations. The only differentiating factor is the change in degree θ for each

figure.
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The elements in this chapter have constructed the first part of the precursory framework

for quantum Lindenmayer systems. They have equipped us with a general flavor for how L-

systems are used in a classical context and their immense aptitude for simulating naturalistic

patterns. The next chapter will present the companion knowledge of quantum computing and

quantum information to supply the other piece of the puzzle before proceeding to quantum

L-systems.
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Chapter 4

Quantum Lindenmayer Systems

“Physical systems speak a language whose grammar consists of the laws of physics.”

– Seth Lloyd

In this chapter we shall consider a new variant of L-systems that takes into account

quantum mechanical attributes. The progression of this L-system alternative will exhibit

quantum mechanically derived probabilities, constructive and destructive interference yield-

ing terms in the language that cancel each other out, unitary evolution, and other specifically

quantum mechanical traits. This mixture of unique qualities in terms of L-systems allows

one to model quantum systems and provides a new domain in which L-systems can flourish.

This new breed of L-system is defined below.

Definition 2 Quantum L-Systems can be defined by the tuple: Q = 〈V,Ψ,P〉 where:

• V ( The Alphabet) - A set of orthogonal basis states of an n-dimensional Hilbert space,

{|ψ0〉, |ψ1〉, . . . , |ψn〉} ∈ Hn
V.

A set of complex probability amplitudes,

{α0, α1, . . . , αn} ∈ Cn.

• Ψ ( Axiom) - An initial state Ψ ∈ V of the quantum system.

• P ( Production Rules) - A finite set of productions P governed by the application of

unitary matrices.
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Let’s consider a basic example to make the above more concrete. Recall in §3.2 we

mentioned the stochastic variant of L-systems. This variation allows some predecessor p to

probabilistically transition to some successor s determined by a probability function π(p) ∈

(0, 1]. In a similar vein, we may consider the linear representation of a qubit, |ψ〉 = α|0〉+β|1〉

and associate the probability amplitudes of the system to the evolution of the L-system. That

is, the qubit may attain either state |0〉 or |1〉 with associated probability amplitudes of either

α or β, respectively. This formulation is described in terms of a Lindenmayer system below.

Quantum Lindenmayer System for a Single Qubit: (4.1)

Axiom : |ψ〉

Alphabet : |ψ〉, |0〉, |1〉, α, β

Rules : p1 : |ψ〉 α→ |0〉

p2 : |ψ〉 β→ |1〉

Hence the system will attain either state |0〉 or |1〉 based on α and β, respectively. This

framework can also be extended to deal with quantum systems of more than just one qubit.

4.1 Simulating Quantum Gates via L-systems

Let us begin with a fairly trivial quantum L-system and incrementally increase the ca-

pability gradually. Consider a system that continually performs the NOT operation. The

L-system will start in some arbitrary basis state of |0〉 or |1〉 and have the NOT gate applied

via the Pauli-matrix σx, where the Pauli-matrices are defined as follows:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 .
(4.2)
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The Pauli-matrices play a large role in quantum mechanics, and especially in quantum

computation and information. These matrices serve as the equivalent to some of the logical

bit operations. Just as the familiar not gate flips a bit state from A → A likewise, σx flips

the state of the qubit from |ψ〉 → |ψ〉. Thus if the qubit was initially |ψ〉 = α|0〉 + β|1〉 it

is altered to |ψ〉 = β|0〉 + α|1〉. It can also be quite easily verified that the Pauli-matrices

are all unitary, a prerequisite for using them to govern the evolution of a quantum system.

What follows below is a formulation in terms of an L-system for performing the quantum

not gate on an arbitrary quantum state.

L-System for quantum NOT Gate (4.3)

Axiom : |ψ1〉

Alphabet : |ψn〉, |ψn+1〉

Constants : σx

Rules : |ψn〉
α→ σx|ψn+1〉

Figure 4.1: The Lindenmayer system (4.3) executes σx on |ψn〉 n times.
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Iterations for L-system (4.3) (4.4)

|ψ1〉 : |0〉

|ψ2〉 : |1〉

|ψ3〉 : |0〉

|ψ4〉 : |1〉

· · · : · · ·

(4.5)

Notice that the rule |ψn〉
α→ |ψn+1〉, is a variation of the evolution postulate in quantum

mechanics (2.15). This, of course, could be extended to any arbitrary unitary matrix to

act upon a single qubit. This system, while simple, illustrates some important abstractions.

First, note that Lindenmayer systems can be expanded into the quantum domain from

a previously strictly classical arena. Second, quantum Lindenmayer systems may harbor

potential benefits in the realm of quantum circuitry. It may accomplish this feat by linking

together multiple quantum gates to perform a desired action based on the evolutionary rules

of governing the L-system. A Lindenmayer system that performs a single quantum operation

continually is not very exciting and does not offer much practicality in its application. To

begin to perform useful operations in general for classical or quantum systems, more than

one unit of information is generally required to proceed. Therefore, our next example extends

our one qubit system to a two qubit system.

Let’s say we have some multi-qubit system, |ψ, ϕ〉. Our goal is to swap the registers of

|ψ〉 and |ϕ〉 to obtain some new quantum system |ϕ, ψ〉. The quantum SWAP-circuit below

performs this desired action.
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Figure 4.2: The quantum SWAP-circuit switches the qubit registers |ψ〉 and |ϕ〉.

If we step through the execution of the quantum SWAP-circuit with our initial state

|ψ, ϕ〉 as shown in the figure, we have:

|ψ, ϕ〉 → |ψ, ψ ⊕ ϕ〉 (4.6)

→ |ψ ⊕ (ψ ⊕ ϕ), ψ ⊕ ϕ〉 = |ϕ, ψ ⊕ ϕ〉 (4.7)

→ |ϕ, (ψ ⊕ ϕ)⊕ ϕ〉 = |ϕ, ψ〉 (4.8)

The ⊕ symbol here represents the exclusive-or operation and the solid black dots (as in

Figure-4.2) represents the identity operation. Hence after the execution of the swap gate, we

now obtain a swapped orientation of states |ψ〉 and |ϕ〉. Recall again in §3.2 that we briefly

described a certain type of parametric L-system that progresses throughout its evolution

based upon predefined logical rules. In a similar vein, we may parameterize the logic of the

swap gate and use the parameterizations as rules to dictate the outcome of our L-system.

The formulation for this approach is provided below.
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Parametric L-system for SWAP circuit: (4.9)

Axiom : |ψ, ϕ〉, i = 0

Alphabet : |ψ〉, |ϕ〉, i

Constants : I, ⊕

Rules : p1 : |ψn〉 : 0 ≡ i mod 2
I→ |ψn+1〉

p2 : |ψn〉 : 0 6≡ i mod 2
⊕→ |ψn+1 ⊕ ϕn+1〉

p3 : |ϕn〉 : 0 ≡ i mod 2
⊕→ |ψn+1 ⊕ ϕn+1〉

p4 : |ϕn〉 : 0 6≡ i mod 2
I→ |ϕn+1〉

4.2 Simulating Quantum Walks via L-systems

Classical random walks have served as an elegant mathematical concept with far reaching

implications. They have been used in numerous academic disciplines from computer science

(Doyle and Snell 2000), physics (Childs, Farhi, and Gutmann 2002), and many others. The

concept is simple. A “walker” begins at some arbitrary point, and moves either to the left

or to the right with some predefined probability. This behavior is iterated many times over

and the position of the walker after a certain number of time steps constitutes the random

walk.

As one may expect, there also exists an analogue for quantum computing referred to as

quantum walks. In contrast to their classical counterpart the current state is not a probability

distribution over positions, but is a superposition of states. Quantum walks are a relatively

new topic in quantum information. Although the roots stem from ideas initially planted

by Feynman (Feynman 1986), they have reemerged from recent investigations of quantum
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computation. Modern applications of quantum walks include: analyzing quantum walks

on regular graphs (Childs, Farhi, and Gutmann 2002), and analyzing mixing behavior of

quantum walks on graphs (Aharonov, Ambainis, Kempe, and Vazirani 2001), to name a few.

There will assuredly be many more added to this list as new applications of quantum walks

are discovered.

Just as classical random walks have supplied a useful model for creating classical algo-

rithms, quantum walks are providing new insights to the development of emerging quantum

algorithms. Grover’s quantum database search algorithm (Grover 1996) for instance, can

be viewed as a quantum walk algorithm. This algorithm also provides a quadratic speed

increase compared to its classical analogue. For certain problems, quantum walks provide

an exponential speed-up in comparison with their classical counterparts (Childs, Farhi, and

Gutmann 2002). This makes understanding and utilizing quantum walks vital for the con-

struction of superior quantum algorithms. Newly proposed quantum algorithms must not

only be superior to their classical counterparts, but must also manipulate the quantum realm.

This makes the conception of new quantum algorithms exceedingly difficult.

The proceeding sections will address the numerous variations of quantum walks and their

accompanying quantum Lindenmayer systems. We shall start with the simplest quantum

walk, which is confined to a line. Two possible modifications of this approach include uti-

lizing discrete or continuous variables. For our purposes we will focus on the discrete case.

From one-dimension, we shall progress to quantum walks on a graph of higher dimensions.

Variations on these include directed, undirected, and reversible walks. Just as in the classi-

cal case, each case possesses subtle differences which will affect the overall evolution of the

system.

4.2.1 Discrete Quantum Walk on a Line

A discrete quantum walk on a line is comprised of two quantum systems, a coin and a

walker denoted as |Ψ〉 and |p〉, respectively. The coin resides in a two-dimensional Hilbert
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space |Ψ〉 ∈ HC . A step either to the left or right may assume orthonormal basis vectors

of |ψL〉, |ψR〉 ∈ HC . The walker is contained within an infinite dimensional (but countable)

Hilbert space |p〉 ∈ HS, where p ∈ Z. The total state space of the quantum walk is executed

on the Hilbert space HT , where HT = HC ⊗HS.

We are also provided with the “rules” of our system supplied as a unitary coin operator

and a unitary shift operator. The coin operator , Ĉ, is responsible for the toss of the quantum

coin. Based on the outcome of the flipped coin, the shift operator , Ŝ, navigates the walker to

the appropriate destination. Since both of these operations are unitary, their combinations

maintain unitarity as well (see §2.3). A single step in the quantum walk is provided by the

unitary equation Û = Ŝ(Ĉ ⊗ I). This denotes the coin toss followed by a shift operation.

We now must choose a unitary matrix to perform the coin flip operation, Ĉ. A customary

choice of matrix in the literature (Aharonov, Ambainis, Kempe, and Vazirani 2001) is the

Hadamard matrix, H. As a slight modification, we are going to use a symmetric coin

and the matrix (4.10) for our choice in evolution. The use of this matrix simply yields a

different probability distribution of the overall walk and does not favor a biased probability

predominantly shifted toward the left or right.

Ĉ =
1√
2

 1 i

i 1

 (4.10)

If we apply the matrix Ĉ to either basis state of |ψL〉 or |ψR〉, we obtain the following:

Ĉ(|ψL〉) =
1√
2
|ψL〉+

i√
2
|ψR〉

Ĉ(|ψR〉) =
i√
2
|ψL〉+

1√
2
|ψR〉.

Finally, we need to define our unitary shift operator. As stated prior, this operator is

responsible for the movement of the walker. Depending on the basis state of either |ψL〉 or

|ψR〉, the walker will move to the left or right, respectively. Conforming with the tradition of
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past literature on the subject (Aharonov, Ambainis, Kempe, and Vazirani 2001), we select

the shift operator to be defined as:

Ŝ = |ψL〉〈ψL| ⊗
∑
p

|p+ 1〉〈i|+ |ψR〉〈ψR| ⊗
∑
p

|p− 1〉〈i|.

As a synopsis of our quantum system, the rules governing these unitary operations are

provided as follows:

Coin Operator:

|ψL〉 → |ψL〉+ i|ψR〉

|ψR〉 → i|ψL〉+ |ψR〉

Shift Operator:

|ψL〉 ⊗ |p〉 → |ψL〉 ⊗ |p− 1〉

|ψR〉 ⊗ |p〉 → |ψR〉 ⊗ |p+ 1〉

To execute a coin flip followed by a subsequent shift, assume an initial position of |Ψ〉 →

|ψR〉 and |p〉 = 0. Applying the operators Ĉ followed by Ŝ we obtain:

|ψR〉 ⊗ |0〉 →
1√
2

[i|ψL〉+ |ψR〉 ⊗ |0〉]

Ŝ → 1√
2

[i|ψL〉 ⊗ |-1〉] +
1√
2

[|ψR〉 ⊗ |1〉]

Observe that the particle may be found with equal probability at |-1〉 and |1〉. So far,

with only one flip and shift there is no discernable difference between a classical and quantum

walk. Iterating a few more times, however, the imaginary numbers cancel probabilities as

opposed to the classical case where they would be continually added. This phenomenon

is known as interference, a trait that is absent from classical random walks. To illustrate
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this point, let us carry out a few more steps of the quantum walk. Again, our axiom is

|Ψ〉 → |ψR〉 and |p〉 = 0.

Axiom|Ψ〉 → |ψR〉 ⊗ |0〉

Step 1:

Ĉ1 →
1√
2

[i|ψL〉+ |ψR〉 ⊗ |0〉]

Ŝ1 →
1√
2

(i|ψL〉 ⊗ |-1〉) +
1√
2

(|ψR〉 ⊗ |1〉)

Step 2:

Ĉ2 →
1

2
[i|ψL〉 − |ψR〉 ⊗ |-1〉] +

1

2
[(i|ψL〉+ |ψR〉)⊗ |1〉]

Ŝ2 →
1

2
[i|ψL〉 ⊗ |-2〉]−

1

2
[|ψR〉 ⊗ |0〉] +

1

2
[i|ψL〉 ⊗ |0〉] +

1

2
[|ψR〉 ⊗ |2〉]

Step 3:

Ĉ3 →
1

2
√

2
[(i|ψL〉 − |ψR〉)⊗ |-2〉] +

1

2
√

2
[(i|ψL〉+ |ψR〉)⊗ |2〉]

Ŝ3 →
1

2
√

2
[i|ψL〉 ⊗ |-3〉]−

1

2
√

2
[|ψR〉 ⊗ | − 1〉] +

1

2
√

2
[i|ψL〉 ⊗ |1〉] +

1

2
√

2
[|ψR ⊗ |3〉]

As can be seen above, the particle has equal probability of being found at |-3〉, |-1〉, |1〉,

and |3〉. In Step 2, the effects of quantum interference can be seen by canceling probabil-

ities. Based on the previous outline of discrete quantum walks on a line, we can define a

Lindenmayer system which encapsulates the necessary components of such a walk.
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Quantum Lindenmayer System for Discrete Quantum Walks on a Line

Axiom : |Ψ〉|p〉

Variables :

|ψL〉, |ψR〉, |Ψ〉 ∈ HC

|p〉 ∈ HS

Rules :

Ĉ :

|ψL〉 → |ψL〉+ i|ψR〉

|ψR〉 → i|ψL〉+ |ψR〉

Ŝ :

|ψL〉|p〉 → |ψL〉|p− 1〉

|ψR〉|p〉 → |ψR〉|p+ 1〉

As a formality, let us use the above system to model the evolution of a quantum walk.

For consistency we shall again assume the same starting state of |ψR〉 and |p〉 for the coin

and walker. For each step n, a coin flip and conditional shift operation will be applied.
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n = 0 : |ψR〉|0〉

n = 1 : i|ψL〉|-1〉+ |ψR〉|1〉

n = 2 : i|ψ〉|-2〉 − |ψR〉|0〉+ i|ψL〉|0〉+ |ψR〉|2〉

n = 3 : i|ψL〉|-3〉 − |ψR〉|-1〉+ i|ψL〉|1〉+ |ψR〉|3〉

Making use of L-systems to model quantum mechanically driven walks may prove to be

beneficial on a number of academic fronts. For one, providing a new model for quantum

walks could stand to benefit ones understanding of how particular quantum walks are set up

and performed. This in turn could help lead to the formulation or alter the existing expres-

sion of quantum algorithms. Expanding the expressive palette for contemplating things of

this nature extends how one may formulate approaches in regard to quantum walks. This

approach also allows one to evolve quantum walks, just as Lindenmayer had done with simple

cellular organisms for a broader perspective on the entire subject matter.

4.3 Applications of Lindenmayer Systems to Quantum Mechanical Processes

In this section we analyze niche areas in which L-systems can be of some use to modeling

quantum mechanical systems. In §4.3.1, we shall observe how this L-system formalism can

be extended to a well-known experimental setup referred to as the Mach-Zehnder Interfer-

ometer . In this setting, the evolutionary path of a photon through the interferometer will

be represented by an L-system. This allows a different method of expression, to be used for

the simplification and diversification of describing an existent physical process.
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4.3.1 Mach-Zehnder Interferometer

These additive elements of quantum theory allow for a wide array of beneficial char-

acteristics. The first, most obvious, improvement is that we can now model the evolution

of quantum mechanical systems. Take for instance a ubiquitous example among quantum

mechanics, the Mach-Zehnder interferometer shown in Figure 4.3. This device is a com-

mon experimental playground for quantum physics (Feynman, Leighton, Sands, and Hafner

1965). It is comprised of two beam splitters, two mirrors, and two photon detectors. To

understand this device let us trace the path of the red beam denoted as the vector |0〉.

First, the light source is activated, which emits a stream of photons that pass through

the first beam splitter. As the name suggests, it splits the beam of photons into two. This

splitting puts the photons in the superposition state of (4.11). The beams then approach

their respective mirrors and are reflected toward the final splitter. This splitter again puts

its photons in the superposition state of (4.12).

1√
2
|0〉+

1√
2
|1〉 (4.11)

1√
2

(
1√
2
|0〉+

1√
2
|1〉
)

+
1√
2

(
1√
2
|0〉 − 1√

2
|1〉
)

(4.12)

At this point, the beams are directed toward a set of photon detectors. Depending on

the setup of the system, the photons may be detected at either one or both of the detectors.

In the setup of our system, however, we shall see that it is absolutely impossible for the

beams to end up at the second detector. This fact is attributed to destructive interference

of canceling probabilities. Likewise, when probabilities combine to form a larger outcome,

this is referred to as constructive interference. In this case, destructive interference can be

observed when we simplify (4.12) by using simple algebraic techniques. Our simplification

yields the state |0〉, implying that it will occur with probability one, and hence the beam

cannot reach detector two.
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Figure 4.3: Mach-Zehnder Interferometer.

This wonderfully rich experiment consists of many of the core principles of quantum

mechanics in a beautifully simplistic environment. It is also quite easy to see how one may

convert this instance to a Lindenmayer system. The axiom may be represented by the basis

state |0〉. The alphabet consists of both basis states |0〉 and |1〉. Finally, the production rules

are obtained by the superposition of the photon as it interacts with the beam splitter. A

formal L-system describing this scenario is provided as (4.13) and the first few iterations of

the system are given in (4.14).
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Lindenmayer System for Mach-Zehnder Interferometer (4.13)

Axiom : |0〉

Alphabet : |0〉, |1〉

Rules :

|0〉 → 1√
2
|0〉+

1√
2
|1〉,

|1〉 → 1√
2
|0〉 − 1√

2
|1〉

Iterations for L-system (4.13) (4.14)

n0 : |0〉

n1 :
1√
2
|0〉+

1√
2
|1〉

n2 :
1√
2

(
1√
2
|0〉+

1√
2
|1〉
)

+
1√
2

(
1√
2
|0〉 − 1√

2
|1〉
)

= 2

(
1√
2

)2

|0〉 = |0〉

In this chapter we condensed the quantum mechanical experiment of the Mach-Zehnder

interferometer into a concise L-system. While not all experiments in quantum mechanics

can be represented as an L-system, it should not be difficult to imagine others that could be

represented as such. For experiments in quantum mechanics involving probabilities, a variant

of a stochastic L-system may be used. This stochastic variant would derive its probability

based on the associated probability amplitudes of a given quantum system.

4.4 Generating Naturalistic Structures Using Quantum Lindenmayer Systems

In chapter 3, we saw that Lindenmayer systems have proven to be exceptionally adept

at generating visually convincing naturalistic structures and processes. Naturally occurring

geometric objects such as snowflakes, for instance, may be conveniently created by a set of
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condensed rules (Rozenberg and Salomaa 1980). These sets of rules contain various boundary

conditions responsible for the particular arrangement of the final outcome. In the case of

the snowflake progression in Figure 4.4, a static angle of 60◦ is supplanted in the rule set to

generate this snowflake variant. Of course as school children learn early on, each snowflake

generated in nature is unique, possessing different geometric configurations, shapes, sizes,

etc. This static constitution of a set angle degree is quite clearly contradictory to what one

observes in everyday experience.

Figure 4.4: The first three iterations of the Koch snowflake.

In the case of branching L-systems, the geometric interpretation yields plant-like patterns

governed by simplistic rules and boundary constraints specified as initial conditions. These

constraints, such as angle separation between branches, attempt to generalize and simulate

the vast majority of plants contained in a specific genus or species (Prusinkiewicz and Bar-

bier de Reuille 2010). As an example, the plant in Figure 4.5 possesses a degree value of

θ = 25.7◦.
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Figure 4.5: A plant generated from L-system F→F[+F]F[-F]F. The angle degree θ = 25.7◦

provides a convincing natural structure, yet exhibits no variety due to its static angle.

This particular angle value imposed on θ provides a relatively accurate way to generate

a set of plants. There is one downfall to this approach, and that is the obvious conflict

with what is observed in nature. Generally, plants, snowflakes, and other naturally de-

rived structures do not all have the same angle measurement, for if they did there would

be far less variety in nature. In order to simulate the randomness and diversity found in

nature, a typical approach is to allow a degree of freedom for the angle value to fluctuate be-

tween (Prusinkiewicz and Barbier de Reuille 2010). If we take the same plant in the previous

figure and allow a range of arbitrary values, say 10.7◦ ≤ θ ≤ 59.7◦ for θ to probabilistically

attain, we progress a step closer to mimicking the variety found in nature. Figure 4.6 provides

a set of plants exhibiting this trait.
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Figure 4.6: A series of plants generated from the L-system F→F[+F]F[-F]F. Upon each

encounter of the symbols “+” or “-”, the angle θ is randomly selected between the range

10.7◦ ≤ θ ≤ 59.7◦.

While this tactic is better than the first, it is still a bit sterile in execution. We made

clear in chapter 1 and formally introduced in chapter 2, that these approaches for L-systems

follow an inherently classical structure, and that this structure is insufficient for accurately

describing physical phenomena at all levels, specifically for the subatomic realm. That being

the case, a theory governed solely on a physically classical implementation will be lacking

in completeness. Quantum theory is currently the most precise interpretation of how the

universe works (Deutsch 1985), and leaving this theory outside of context for the scope of

Lindenmayer systems disregards an important element that is fundamental to the structure

of nature.
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In order for us to obtain reasonable naturalistic structures through a quantum variant

of L-systems, our first obstacle is how to go about limiting the values obtained through

quantum mechanical processes to conform to a specific range. Without this restriction of

values, systems may attain exceptionally low or high numerical output, which in the case

of a plant for instance, would severely alter its structure in a non-convincing way. In order

to proceed we must devise a method to restrict the range utilized in a quantum L-system

to yield values suitable for our purpose. In the next section, we describe a hybrid approach

that combines extraction of information from both classical and quantum arenas.

4.4.1 Limiting the Range of Values Obtained From Quantum Lindenmayer Systems

In this section we shall take the conceptual example presented in the previous section

to illustrate how one may obtain a limited range of values. This specific example may be

extrapolated to other naturalistic and non-naturalistic endeavors where the desired outcome

is to restrict ones potential range to a limited set of numerical values. Consider a simplistic

scenario where our goal is to obtain a value range of 4 ≤ x ≤ 7. We can first realize that

the values 4, 5, 6, and 7 can be represented by the entangled qubit states in (4.15).

|100〉 ↔ 4

|101〉 ↔ 5

|110〉 ↔ 6

|111〉 ↔ 7 (4.15)

We make the observation that the first element in the qubit state in (4.15) is consistently

one, while the remaining two qubits may attain any possible arrangement of 00, 01, 10,

and 11. While this does indeed supply us with our desired range, it cannot be physically

realizable due to the stipulation of the first qubit consistently keeping its value of one. This

is because the state of a qubit is indeterminate until a measurement has taken place, and
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thus putting the qubit in a certain state violates the rules of quantum theory. We can,

however, mesh a classical and quantum variant to obtain our desired range result. For this

variation, our state will only consist of two qubits as opposed to three. The third element

of information in this example will be from a classical source.

Our first step is to initialize our qubits to some arbitrary state, say |00〉. We know that

if we were to measure the quantum system at this stage, we may probabilistically obtain

either, 00, 01, 10, or 11 as post-measurement output. Once the quantum system has been

measured, there remains no uncertainty as to the value of the result, thus the information

post-measurement is classical in nature. This resultant classical information can then be

slightly modified by attaching the value of one to the beginning of the binary string. This

hybrid approach, shown in (4.16), allows the range of the numerical value to be generated

by quantum phenomena, and the value one assumes the role of ensuring that the obtained

results are at least as large as need be. The post-measurement information obtained from

this system can then be fed through a Lindenmayer system to construct a plant, fractal, etc.

governed by classical information obtained from a quantum system.

The fundamental difference in this scenario compared to the previous instantiations is

that our range is not being acquired by a superficial random process or an artificial num-

ber generator, but through the purest random process of quantum mechanics (Chuang

and Nielsen 2000). As a generalization, this could be extended to any range of values

2n ≤ x < 2m. The value need not be a power of 2, and can be bounded between any values,

which do not necessarily need to be integers.

00 ↔ 1→ 100↔ 4

01 ↔ 2→ 101↔ 5

10 ↔ 3→ 110↔ 6

11 ↔ 4→ 111↔ 7 (4.16)
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Limiting the range of values obtained from a process such as this could be done in a number

of ways. The method shown here is not unique, and assuredly other similar methods exist

to extract the information from a quantum system. Once we have this information, we can

make use of it within our L-system. In the next section we take this theoretic model and

extend the basic approach to a visually realizable result. This will be achieved by making

use of a service that provides a information generated by quantum mechanical processes.

4.4.2 A Stochastic Approach Based on Quantum Mechanical Phenomena

The preceding section describes a method that one could in theory implement and pursue

to generate naturalistic structures based on a hybrid quantum mechanical and classical

approach. The previous approach unfortunately requires extremely sensitive and accurate

instrumentation for successful realization of the system. One of the reasons for this follows

from the current exceedingly difficult practice of preparing entangled qubit states to form

stable configurations despite external disturbance forces. This current conundrum plagues

researchers in quantum information science in coming up with stable quantum systems to

perform actions upon a quantum system. While confronting this problem is a current area

of research to ensure quantum computation as a mode for reliable computation, it is still

undoubtedly a futuristic enterprise that will take more time to perfect and develop.

In this vein, this section focuses on a very similar technique to achieve comparably sim-

ilar results. This will not only allow us to consider a slightly different alternative, but will

also let us visually observe the results we obtain from these systems. We accomplish these

analogous results by using QRBG service (Stevanović, Topić, Skala, Stipčević, and Rogina

2008) (Quantum Random Bit Generator), which is a device designed and developed at the

Laboratory for Stochastic Signals and Process Research in Croatia. This device is an original

random number generator that relies on quantum processes to yield random numbers. It

accomplishes this feat in a novel way by utilizing the photoelectric effect. Specifically, QRBG

is able to generate the random output by photonic emissions in semiconductors. The emis-
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sions are then detected by the photoelectric effect, and the relative timing of the detected

photons, provide the random numbers.

By using this method we access the only currently scientifically validated non-deterministic

method for generating random numbers. For the purposes of this section, this will allow us

to generate the quantum mechanical portion for input into our L-system. However as before,

we have the same issue of limiting the range of values gathered from this process. That is to

say, that the numbers received from the random number service can attain exceedingly large

or small numerical values. Limiting our range in this case is slightly more straightforward,

as we simply need to multiply the numbers obtained by a certain factor of whatever we wish

to receive, and simply accept the numbers based on the same criteria.

As an example, consider again the construction of the plant via L-systems. As dictated by

the rules of the L-system, the imposed angle degree θ = 25.7◦ is enforced to ensure a realistic

geometry for a general plant. As we have seen, stochastic L-systems allow a variance of angles

that θ may equal at any time during the construction of the geometry. In a very similar

way, we simply bound the construction of a plant between two exterior boundary angles and

allow the QRBG service to generate these values. For instance, Figure 4.7 provides a set of

plants generated by this particular QRBG service.
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Figure 4.7: A selection of plants generated by the QRBG service with different thresholds

of angle acceptance.

This section has provided somewhat of a supplement to the previous section. We have

seen how one can use a process governed by the laws of quantum mechanics to simulate natu-

ralistic structures. In essence, this example is simply a stochastic L-system with information

from a quantum source as opposed to classical source.

4.5 Applications of Lindenmayer Systems to Grover’s Quantum Search Algorithm

4.5.1 Grover’s Quantum Search Algorithm

In this section we briefly describe a quantum algorithm conceived of by Lov Grover to

search for a specified element in a database (Grover 1996). We proceed to present a geo-

metric interpretation of this algorithm that provides a visual representation of its execution.
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Consider an unordered database containing N elements, where the contents are numbered

from 0 to N −1. Among the elements there exists one in particular, x, which fits our search-

ing requirements where the rest do not. The algorithm will return 1 upon a successful search

of the desired element, and 0 otherwise.

G(n) =

 1 if n = x.

0 ∀n 6= x.

Considering the classical case of this problem, searching for element x will take on average

N/2 attempts or in the worst case N attempts, hence the complexity is O(N). We shall

see that Grover’s algorithm offers a quadratic speed increase reducing the running time

to O(
√
N). This speed up is attributed to specific quantum mechanical traits, that the

algorithm exploits in its execution.

In essence, the algorithm achieves its result by following a concise sequence of steps

outlined as follows. First, we begin with an n-qubit state and initialize all the qubits to the

state |0〉 ≡ |00 . . . 0〉. When we initialize all of the qubits to their ground state, |0〉, it is

notationally equivalent to the following.

|0〉 ≡



0

0

...

0


(4.17)

We follow this by putting all of these qubits to an equal superposition state. This can be

accomplished via the Hadamard transform (Nielsen, Chuang, and Grover 2002), represented

below.

|ψ〉 =
1√
N

N−1∑
n=0

|n〉, where N = 2n. (4.18)
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From this point forward, an iterative set of steps, referred to as a Grover iteration,

carried out a predefined number of times. The Grover iteration is comprised of three specific

subroutines which we shall denote as O,H,P, and are summarized in the following table.

Table-1: Grover Iteration

1. O - Apply the oracle O.

2. H - Apply the Hadamard gate H.

3. P - Apply a conditional phase shift.

The order in which the subroutine is carried out upon each iteration is O H P H. For

step O of the Grover iteration, the oracle can be thought of as a “black box” whose inner

workings are not vital at this particular time. Provided the oracle is given an input n, it will

correctly return values for some function f(n). In our case, we query the oracle whether some

n is the desired element we are searching for. The oracle possesses the ability to recognize a

solution and provide us with either a yes or no. The oracle could potentially be extremely

complex or quite simple, but for our purposes it is irrelevant exactly how it achieves its

result, as long as the correct result is achieved. Routine O distinguishes the solution element

by shifting the phase, thereby marking the correct term.

O : |n〉 → (−1)f(n)|n〉. (4.19)

Performing action P shifts the phase of the solution element, which inherently marks the

desired search solution. We say that it marks this element because it distinguishes the term

in the superposition state by changing its respective sign. The phase operator acts upon the

n-qubits as



55

P :

 |n〉 → −|n〉 n 6= 0

|0〉 → |0〉

Carrying out procedure H applies the Hadamard transform to our n-qubits, which is

notationally described as H⊗n. This transformation is accomplished by applying the unitary

matrix

H =
1√
2

 1 1

1 −1

 (4.20)

to each of the n-qubits. The effect of applying the Hadamard gate on our originally

initialized n-qubit state |0〉 is shown in the following equation.

H|0〉 =
1√
2n

(|0〉+ |1〉)(|0〉+ |1〉) . . . (4.21)

If we multiply out the above result, we obtain a superposition of states that contains all N

possible sequences of either |0〉 or |1〉 values as represented in the superposition state (4.18).

In circuit notation, the Grover iterate can be described by the following circuit diagram,

where the number of iterations is carried out O(
√
N) times.

Figure 4.8: A circuit diagram of the Grover algorithm.

To summarize what we have covered above, we generalize the steps of Grover’s algorithm.
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Table-2: Grover’s Algorithm

1. Initialize the computer to the state |0〉 ≡ |00 . . . 0〉.

2. Apply H⊗n to the qubits to create the superposition state
N−1∑
n=0

|n〉.

3. Perform the Grover iteration a total number of O(
√
N) times.

4. Measure the first n qubits.

4.6 Formalizing Grover’s Algorithm into a Lindenmayer System

As we saw in § 4.5.1, the heart of Grover’s algorithm is the iterative procedure. This

process is primarily responsible for the algorithm’s novelty in achieving its result. Here we

shall cover methods for considering how one may proceed in formulating the Grover iteration

in terms of an L-system. In doing so, we gain further perspective on formulation, execution,

and resolution of the algorithmic procedure and its scope to other fields. The formulation

could also be abstracted to other unique models of computation (e.g. evolutionary computa-

tion (Spector 2004), quantum circuit simulation (Viamontes, Markov, and Hayes 2009), etc.)

that will optimistically prove useful or perhaps more compact, convenient, and relevant to

particular tasks in their respective fields.

Let us begin by generalizing the action of a single Grover iteration performed upon some

state |Ψ〉.

G|Ψ〉 = HPHO|Ψ〉. (4.22)

Notice that the listing of subroutines of state |Ψ〉 is reversed. This is so because process



57

O is the first to be applied to the state, followed by subroutine H, and so on. The combined

subroutines acting on state |Ψ〉, are nothing more than compounded unitary operators acting

upon their respective state. For simplicity, we shall represent the iteration by a single

variable, µ = HPHO. We know from §4.5.1, that the Grover iteration must be repeated
√
N times in order to yield the desired result. Hence the amount of times the algorithm

performs this procedure can be parameterized, using
√
N as the stopping case.

G(x)I(i) : i <
√
N → G(µi)I(i+ 1)

G(x)I(i) : i ≥
√
N →M(Measurement). (4.23)

The parameterizations above consists of two functions G(x) and I(i), where G adds a

Grover iterate, and I keeps track of the iterations performed. The actions that take place

before and after the iterations can be instantiated on the occurrence of certain criteria. For

instance, our axiom state is simply the n-qubit state ket vector |0〉 = |00 . . . 0〉. This serves

as the starting point for our L-system. Likewise, measuring the state of our resulting qubit

vector at the end of the algorithm can be invoked when the algorithm has reached that point

in its execution. The signal to the L-system to initiate measurement will be dependent on the

particular problem size, specifically, how many iterations to perform. We can generalize the

above considerations into an L-system that carries out a predetermined number of Grover

iterations.
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Parametric L-System for Grover Iteratioin

Axiom : G(H|0〉)I(0)

Alphabet : µ, i

Constants : N

Rules : G(x)I(i) : i <
√
N → G(µi)I(i+ 1)

G(x)I(i) : i ≥
√
N →M (4.24)

In an L-system (4.24), we’ve simply appended the parameterized functions (4.23) as

production rules and added an appropriate axiom state consisting of the initialized qubit

vector. This provides us with a parametric Lindenmayer system to execute a sequence of

Grover iterations. If we execute the L-system described above with N = 16 we obtain the

following output.

Iterations for (4.24) L-system

n0 : G(H|0〉)I(0)

n1 : G(µH|0〉)I(1)

n2 : G(µ2H|0〉)I(2)

n3 : G(µ3H|0〉)I(3)

n4 : M (4.25)

The output is intuitive and straight forward. As the system progresses, the Grover iterate,

µ, is appended onto the system upon each iteration. Likewise our condition variable i keeps

track of how far to progress based on the input size of N before performing a measurement.

Once a measurement is performed on our quantum system the execution is complete. It
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should be noted that in order to remain consistent and abide by the laws of quantum theory,

once the measurement of the system is performed we are prevented from reverting to a

previously held state of the quantum system. That is to say, performing a measurement on

a quantum system is final and definitive.

4.6.1 Turtle Geometry and Grover’s Algorithm

There exists an elegant and descriptive geometric interpretation of how Grover’s algo-

rithm succeeds in achieving its result. In this section, we intend to combine the topics of

both visualizing L-systems via turtle geometry, and the geometric interpretation of Grover’s

algorithm, thereby generating a visual L-system that describes the geometric process.

We acknowledge that the algorithm takes place on the two-dimensional coordinate plane,

with the plane residing in a Hilbert space H2n , that contains |x〉 (the desired element we are

searching for) and |ψ〉 (the superposition state (4.18)). We shall remark that states |x〉 and

|ψ〉 are never entirely orthogonal to each other as revealed by the inner product (4.26).

〈n|ψ〉 =
1√
N

(4.26)

The angle between kets |x〉 and |ψ〉 can be geometrically defined as cos θ = 1√
N

. As N

becomes larger, the state progress closer toward orthogonality, yet never quite attains it. In

this scenario, let us define some arbitrary state |ϕ〉 to be orthogonal to our desired element

|x〉, as shown geometrically in Figure 4.9.
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Figure 4.9: Coordinate plane in a 2n-dimensional Hilbert space for Grovers algorithm.

Let us remark that we are able to describe any state within this plane by the equation

cos θ|ϕ〉+sin θ|x〉. Recall that our goal is to find the desired element |x〉, or from a geometric

perspective, obtain θ = π
2
. In order to reach our desired goal, we need to perform a set amount

of Grover iterations to move us progressively closer to our target state |x〉. As we observed

in §4.5.1, we need to perform approximately
√
N iterations to obtain |x〉. This translates

geometrically to the vector |µ〉 increasing its angle by θ = 2 sin−1
(

1√
N

)
.

Every time the iteration is applied, we move closer to our target state |x〉 by angle

θ = 2 sin−1
(

1√
N

)
that is until we go beyond

√
N iterations and surpass it. It is worth

noting that with the exception of a specific case (N = 16), we never precisely land on our

target qubit. That is to say we either precede or surpass |x〉 geometrically. As far as the

algorithm itself is concerned, this poses no problem but is worth noting for our purposes

here.

The following table summarizes the location of the state vectors on the coordinate plane

for the 2n-dimensional Hilbert space.
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Table-3: Geometric Interpretation of Ket Vectors

1. |ψ〉 ≡ θ = sin−1
(

1√
N

)
, Superposition state.

2. |µ〉 ≡ θ = 2 sin−1
(

1√
N

)
, Single Grover Iteration.

3. |x〉 ≡ θ = π
2
, Target element.

4. |ϕ〉 ≡ θ = 0, Orthogonal state to |x〉.

5.
⌊

π
4 sin−1

√
N

⌋
≈
√
N , Grover iterations.

By making use of the information provided in the table above, we are able to feed

instructions to an L-system to geometrically carry out the execution of a series of Grover

iterations. Our axiom state in this case will correspond to the initial superposition state

|ψ〉, which represents the first pass through the Hadamard gate to prepare all of the qubits

in their preliminary superposition. From that point forward, we carry out the appropriate

number of Grover iterations, which geometrically translates to iterated angles of state |µ〉.

Formalizing this in terms of an L-system we have:
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Geometric L-system for Grover Iteration

Axiom : |ψ〉

Alphabet : |ψ〉, µ

Constants : θ,N

Rules : |ψ〉 → +µ|ψ〉 (4.27)

We may use this system to generate the graphical output. Depending on the problem

size of the search problem, the L-system output will vary based on the number of elements

N . Figure 4.10 provides a set of arbitrary problem sizes and their corresponding graphical

output.

Figure 4.10: Geometric output from L-system (4.27).
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Chapter 5

Conclusions and Future Work

5.1 Synopsis

This thesis has introduced the notion of quantum Lindenmayer systems, a combined

entity of quantum computing and L-systems. We have seen how to formulate these entities

by iteratively building upon simplistic example implementations. In particular, quantum L-

systems take advantage of quantum mechanically driven phenomena including entanglement,

superposition, etc. to perform work. This combination of concepts has enabled our newly

presented extension from a previously classical abstraction to a quantum one. The benefits

incurred by merging the L-system framework with the quantum mechanical composition

allows a further expressive formalism by which to consider and describe quantum processes

and events.

We have also seen how one may extend the L-system framework to model quantum

mechanical processes. In this work specifically, one of the systems we considered was the

Mach-Zehnder interferometer. By exploiting the evolutionary component as well as the

parallel nature of this experimental framework, we were able to formulate the trajectory of

an arbitrary particle in terms of an L-system. Furthermore, considering certain quantum

algorithms possessing this component, Grover’s algorithm was also formulated in terms of

an L-system.

5.2 Future Work

Further extensions to this work may take the form of tangible working examples to the

proposed methods. Constructing a working codebase to visually simulate quantum Linden-

mayer systems in a similar fashion to what has previously been done with quantum cellular
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automata simulations (Grossing and Zeilinger 1988) would add a new layer of practicality.

These simulations would enrich and enforce the theoretical material presented, just as visu-

alizing L-systems solidified and extended their application domain. Extensions to this work

could also take the form of building a set of practical quantum circuits from preliminary

methods described here. Evolving and building circuits and quantum systems in this way

could allow for diverse and interesting results comprised of novel combinations and growth

patterns of circuits. Quantum L-systems may also be applied to other facets of quantum

computing. Specific iterative processes prevalent in quantum computing found in various

algorithms, applications to selected problems, error correcting codes, etc. may be exploited

through the use of quantum L-systems.

The quantum systems modeled by L-systems in this work are assuredly not all-encompassing.

Finding new quantum systems to model through the use of Lindenmayer systems would

also provide a further expanse in their scope. In addition, there exists inherent mathe-

matical structures to specific quantum processes (Coldea, Tennant, Wheeler, Wawrzynska,

Prabhakaran, Telling, Habicht, Smeibidl, and Kiefer 2010). Detecting and exploiting this

structure could serve to illuminate many of the underlying fundamental mysteries in nature.

Hypothetically, by using L-systems as a tool to model systems, certain traits and patterns

may emerge to promote swift detection of these intrinsic patterns. Furthermore, extending

to new domains of related science could also be useful. The field of string theory has a set of

certain numbers that crop up in various calculations (El Naschie 2007). Using L-systems to

detect regularity in these systems may be useful to pinpoint where and why these numbers

appear. Abstracting further, constructing an L-system to simulate behavior of Fibonacci

anyons, bosons, fermions, etc. may be realizable as well.

As was mentioned in 1.1, we briefly noted the significance of modifying classical the-

oretical computer science topics to account for quantum computational processes. In a

similar fashion in this thesis, we considered the classical Lindenmayer system and surveyed

specifically what would need to be altered for it to be considered in this way. Doing this
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allows us to question what is and is not possible in the quantum domain when considering

these constructs. Optimistically the quantum Lindenmayer system may serve some practical

theoretical future in the analysis of certain problems from different domains of quantum

computation.

In previous works, the universe has been considered to be nothing more than a large-scale

quantum computer (Lloyd 2006). While some would argue this analogy to be indicative of

the current trends of technology, I side with the opposition. The universe is constantly

computing the current state of itself. From the trajectory of particles, to the collision of

galaxies, the outcome of these events are calculated and appropriately physically reflected.

The universal language appears to be written in the theory of quantum mechanics. By taking

advantage of the quantum L-system model, one could initiate a simplistic universe model

and take advantage of quantum mechanical traits in evolution to gain perspective on how

such systems would evolve.

Regardless to any of the above coming to fruition, quantum L-systems serve as an intrigu-

ing intellectual endeavor. Their consideration will optimistically yield compelling thought

experiments pertinent to the already diverse field of quantum computing. The field of L-

systems too, may now be considered as not only a model for classical applications, but also

ones of relevance to quantum theory.
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Due to their compactness, robustness, and conciseness, Lindenmayer systems (L-systems)

have served as a popular tool for modeling numerous types of systems. Quantum systems,

algorithms, and processes maintain a certain regularity to which L-systems are proficient at

modeling. In this thesis we explore how one may formulate L-systems in terms of quantum

computational areas and the benefits incurred from doing so. This new approach is oriented

toward a further extension in the field of L-systems, allowing us to model behavior of quantum

computational aspect and more expressively describe quantum processes and phenomena.

A particular implementation strategy of how one may invoke an L-system to model these

constituents are presented and evaluated.
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