
Quantum error mitigation by layerwise Richardson extrapolation

Vincent Russo1, ∗ and Andrea Mari1, 2

1Unitary Fund
2Physics Division, School of Science and Technology, Università di Camerino, 62032 Camerino, Italy

A widely used method for mitigating errors in noisy quantum computers is Richardson extrap-
olation, a technique in which the overall effect of noise on the estimation of quantum expectation
values is captured by a single parameter that, after being scaled to larger values, is eventually ex-
trapolated to the zero-noise limit. We generalize this approach by introducing layerwise Richardson
extrapolation (LRE), an error mitigation protocol in which the noise of different individual layers
(or larger chunks of the circuit) is amplified and the associated expectation values are linearly com-
bined to estimate the zero-noise limit. The coefficients of the linear combination are analytically
obtained from the theory of multivariate Lagrange interpolation. LRE leverages the flexible con-
figurational space of layerwise unitary folding, allowing for a more nuanced mitigation of errors by
treating the noise level of each layer of the quantum circuit as an independent variable. We provide
numerical simulations demonstrating scenarios where LRE achieves superior performance compared
to traditional (single-variable) Richardson extrapolation.

I. INTRODUCTION

In recent years, the field of quantum technologies has
witnessed extraordinary progress, especially in the evolu-
tion of noisy intermediate-scale quantum (NISQ) devices.
Despite their capacity to excel over classical devices in
certain tasks [1–7], NISQ devices are notably hindered
by substantial noise, adversely affecting their output.

As we await the advent of fault-tolerant devices [8], a
significant field of exploration for addressing the preva-
lent noise issues is quantum error mitigation (QEM) [9–
23]. QEM serves as an intermediate approach to fault
tolerance that can be realized at present to overcome the
hurdle of noisy devices. There are a variety of QEM
techniques that are the subject of active research, for
example, zero-noise extrapolation (ZNE) [10, 11, 13],
probabilistic-error cancellation (PEC) [11, 12, 24, 25],
dynamical decoupling [26–29], and Clifford data regres-
sion [30, 31].

In this work, we focus on ZNE, a technique that
has been used in many quantum computing experiments
[13, 16, 18, 32–34] and that has shown strong perfor-
mance despite the simplicity of its practical implemen-
tation. For a given quantum circuit, the primary idea
of ZNE contains two steps; intentionally scaling up the
noise of the circuit and then extrapolating to the noiseless
limit.

For the first step, there are several techniques one can
consider to intentionally increase the noise, one of which
is unitary folding [15, 35]; a process that increases the
length of the quantum circuit, and by proxy, the noise.
The second step is achieved by fitting a curve to the
expectation values measured at different noise levels to
extrapolate to the noiseless expectation value. One such
method, Richardson extrapolation (RE) [11], corresponds
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to a single-variable polynomial interpolation of the noise-
scaled expectation values.
In this work, we generalize Richardson extrapolation

to a multivariate framework in which we consider mul-
tiple independent noise parameters associated with the
different layers (or with different chunks) of the full cir-
cuit. We call this new approach layerwise Richardson ex-
trapolation (LRE), while we use the acronym RE for the
conventional approach based on single-variable Richard-
son extrapolation. To generalize RE to the multivariate
LRE technique, we need to address two sub-problems: (i)
A way of scaling up the noise of specific layers, without
perturbing the rest of the circuit. (ii) A way of post-
processing the information obtained from the (layerwise)
noise-scaled circuits to infer the zero-noise limit.
A noise-scaling strategy that can be used to solve the

first sub-problem is layerwise folding [36, 37]: an ap-
proach that considers a quantum circuit as being com-
prised of several layers and where a variable amount of
folding [15, 35] can occur at any given layer of the circuit.
Layerwise folding has been used in [36, 37] as a circuit
debugging technique, for example, to assess what layers
in a quantum circuit are particularly susceptible to noise.
Instead, in this work, we are not interested in using lay-
erwise folding as an error characterization method, but
as an error mitigation tool.
The second sub-problem that we need to solve is how

to generalize Richardson extrapolation in a framework
in which the expectation value of an observable can be
considered as a multivariate function of the noise levels
associated with different layers. We address this sub-
problem by applying the mathematical theory of multi-
variate Lagrange interpolation [38, 39], which allows us
to express the zero-noise limit as a linear combination
of the noise-scaled expectation values, each one weighted
with a suitable real coefficient which only depends on the
noise scaling factors.
It is interesting to compare the characteristic features

of LRE for two similar techniques: PEC and RE. Like
PEC, LRE involves a linear combination of many circuits
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in which only some specific layers are changed, while the
rest of the circuit is kept unmodified. Unlike PEC but
similar to RE, LRE does not necessitate full knowledge of
the noise model. This is because the generation of mod-
ified circuits in LRE is deterministic and solely depends
on the choice of the noise scale factors. It is also worth
noting that for the case of linear extrapolation, LRE re-
duces to the noise-scaling variant of the NOX method
described in the Appendix of [40]. A further interesting
connection is to the NEPEC technique introduced in [41],
in which noise scaling has been proposed as a way to build
quasi-probability representations of individual gates (or
layers) to be used for probabilistic error cancellation. Our
technique is also related to [42], in which ZNE has been
proposed for mitigating a multi-parameter noise model.

In [42], however, the parameters are associated with
different physical errors acting uniformly along the cir-
cuit (e.g. the values of T1 and T2 for a qubit), noise
scaling is obtained by running the same circuit on differ-
ent qubits, and the final extrapolation is obtained by a
numerical best fit. In this work instead, we tune the noise
level of different layers by using localized folding opera-
tions and without introducing additional qubits. More-
over, instead of using a numerical best fit, we provide an
analytic expression for the zero-noise limit based on the
theory of Richardson extrapolation.

This article is organized as follows. In Section II, we
formally define the LRE technique and describe the noise
scaling (Section IIA) and extrapolation strategies (Sec-
tion II B). We also consider how one can apply LRE to
a circuit in chunks (Section IIC) as well as the sam-
pling overhead of LRE (Section IID). In Section III, we
showcase some examples and numerical experiments us-
ing LRE, illustrating its practical advantages and limita-
tions. We conclude in Section IV with future directions
and potential applications for the LRE technique.

II. LAYERWISE RICHARDSON
EXTRAPOLATION (LRE)

In this section we present the layerwise Richardson ex-
trapolation (LRE) technique, for the mitigation of errors
acting on quantum circuits. Much like RE, it consists
of two major steps; noise scaling and extrapolation. For
noise scaling, in Section IIA, we evaluate an expectation
value at different vectors of scale factors via a layerwise
folding approach. For extrapolation and post-processing
of these expectation values, covered in Section II B, we
make use of the mathematical theory of multivariate La-
grange interpolation.

A. Noise scaling

In RE, one of the mechanisms that is often used to
scale the noise is unitary folding [15, 35]. A more targeted
way in which the noise can be scaled is to apply layerwise

folding, as proposed in, for instance, [36, 37]. Instead of
increasing the depth of the entire circuit considered as
a single global entity, layerwise folding acts on specific
layers of the circuit (see Figure 1).
An n-qubit quantum circuit C may be represented as

a series of ℓ layers. Each layer Lk for 1 ≤ k ≤ ℓ contains
one or more quantum gates acting concurrently on an
n-qubit system

C = LℓLℓ−1 · · ·L2L1. (1)

In what follows, we denote each term Lk as a layer. How-
ever, the full theory of LRE is equally applicable assum-
ing that each Lk represents a multi-layer chunk of the
full circuit (see Section IIC for more details).

Consider a collection of N different scale factor vectors

Λ = {λ1,λ2, . . . ,λN}, (2)

where each λi is a vector of ℓ scale factors that specifies
how the noise is scaled across different layers

λi =
(
λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
ℓ

)
, λ

(i)
k ≥ 1. (3)

For a collection of scale factor vectors defined by Λ, we
denote

CΛ = {Cλ1 , Cλ2 , . . . , CλN } (4)

as the corresponding set of circuits. Each circuit in CΛ

is layerwise noise-scaled according to the corresponding
scale factor vector.

While layerwise folding is our chosen method for scal-
ing the noise, it is important to note that this approach is
not the only option. In principle, various methods can be
employed to selectively scale the noise of specific circuit
layers. For example, a promising alternative is given by
the pulse-stretching method [11, 13], assuming the possi-
bility of applying different stretchings to different layers.

For layerwise folding, each scale factor λ
(i)
k corresponds

to the k-th layer Lk of the circuit C and is defined as

λ
(i)
k = 1 + 2m

(i)
k . (5)

Here, m
(i)
k is a non-negative integer representing the

number of times the k-th layer Lk is to be folded. The
folding operation [15, 35] for each layer Lk is expressed
as

L
λ
(i)
k

k =
(
LkL

†
k

)m(i)
k

Lk, (6)

where L
λ
(i)
k

k is the new k-th layer after the folding op-
eration. If Lk represents a chunk of the circuit that
is itself composed of t elementary sub-layers Lk =
Gk,t · · ·Gk,2Gk,1, unitary folding can be applied in dif-
ferent ways. One option, known as global folding [15],
corresponds to Equation (6). A common alternative op-
tion, known as local folding [15], is instead:

L
λ
(i)
k

k = (Gk,tG
†
k,t)

m
(i)
k Gk,t · · · (Gk,1G

†
k,1)

m
(i)
k Gk,1. (7)
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Both methods scale the depth of Lk by λ
(i)
k ≥ 1 and are

exactly equivalent when t = 1. For large t, one can apply
unitary folding partially or randomly [15, 35], such that

the scale factor λ
(i)
k is not constrained to take the odd

integer values as implied by Equation (5). However, for
simplicity, in this work, we always assume odd integer
scale factors since they are always implementable for any
t.
For a given vector λi of scale factors, the resulting

circuit Cλi is represented as

Cλi = L
λ
(i)
1

1 L
λ
(i)
2

2 · · ·Lλ
(i)
ℓ−1

ℓ−1 L
λ
(i)
ℓ

ℓ . (8)

In this framework, the vector of scale factors λi explicitly
defines which layers of the circuit are to be folded and
the number of times each specified layer is folded. A
depiction of the folding operation for an arbitrary circuit
is shown in Figure 1.

Figure 1. An arbitrary quantum circuit consisting of three
layers; L1, L2, and L3. The circuit on the right is con-
structed according to a vector of noise scale factors λi =

(λ
(i)
1 , λ

(i)
2 , λ

(i)
3 ) that determines how much the depth of each

layer is scaled up by unitary folding (or by any other noise
scaling method which can act layerwise). Without noise, the
two circuits are equivalent. With noise, the circuit on the
right is subject to more errors. Moreover, noise is amplified
on some specific layers and less amplified (or unchanged) on
other layers.

For each circuit in CΛ from Equation (4), one may
compute the corresponding expectation value of a fixed
observable of interest O. Specifically, we denote all the
expectation values associated with CΛ as

z = (⟨O(λ1)⟩, ⟨O(λ2)⟩, . . . , ⟨O(λN )⟩)T (9)

where ⟨O(λi)⟩ is the expectation value of the observable
O, estimated from the execution of the circuit Cλi .

B. Extrapolation

Once we have scaled the noise via the layerwise folding
approach discussed in Section IIA and obtained a vec-
tor of expectation values evaluated at different vectors
of scale factors as in Equation (9), we proceed to post-
process this raw data by a multivariate generalization of
Richardson extrapolation.

For a vector of scale factors λ = (λ1, . . . , λℓ), we define
the basis of all monomial terms of ℓ variables of maximum

degree d as M(λ, d). For instance, for λ = (λ1, λ2) and
d = 2, we have

M(λ, 2) = {1, λ1, λ2, λ
2
1, λ1λ2, λ

2
2}. (10)

In general, the number of monomial terms is given by

M ≡ |M(λ, d)| =
(
d+ ℓ

d

)
, (11)

and we assume that the monomials are ordered with an
increasing total degree. For example, a typical choice is
the graded lexicographic order [43]. This implies that the
first element of the list of monomials is 1, i.e., the term
of zero degree that survives when taking the zero-noise
limit λ → 0, where 0 is the all-zero vector.
For our purposes, typical values of the maximum de-

gree are d = 1 or d = 2, corresponding to a linear scaling
M = ℓ+ 1 and a quadratic scaling M = (ℓ+ 1)(ℓ+ 2)/2
of the number of terms, respectively. More generally, for
a fixed extrapolation order d, the number of monomials
M scales polynomially with respect to ℓ since we have

M =
1

d!

d∏
i=1

(ℓ+ i) = O(ℓd). (12)

We aim to interpolate a multivariate polynomial func-
tion that captures the relationship between the vectors of
scale factors and the expectation values as defined from
Equation (9). Specifically, we model the dependence of
the expectation value as a function of the noise scale fac-
tors as a generic polynomial of degree d

⟨O(λ)⟩ =
M∑
j=1

cjMj(λ, d), (13)

where {cj} are real coefficients. We are particularly in-
terested in extrapolating Equation (13) to the zero-noise
limit, that is

OLRE ≡ ⟨O(0)⟩ =
M∑
j=1

cjMj(0, d) = c1. (14)

Given the collection Λ of scale factor vectors, as defined
in Equation (2), we define the sample matrix

A(Λ, d) =


a1,1 a1,2 · · · a1,M
a2,1 a2,2 · · · a2,M
...

...
. . .

...
aN,1 aN,2 · · · aN,M

 , (15)

where each entry in the matrix is defined as

ai,j = Mj(λi, d). (16)

As a notational convention, we often write Equation (15)
as just A, whenever it is clear what the values of Λ and
d are. Each row of A corresponds to a specific scale
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Figure 2. An overview of the LRE experimental workflow. As input, we consider an n-qubit quantum circuit consisting of ℓ
layers or, equivalently, l circuit chunks. Given the parameter l and the extrapolation order d, we generate M =

(
d+l
d

)
linearly-

independent vectors of scale factors (see Equation (21) for a convenient generation pattern). In practice, for each vector of scale
factors, one can set most elements to 1 (no noise scaling) and assign larger values to just a few elements. From this, we perform
layerwise folding on the input circuit generating M different circuits, one for each vector of scale factors. Each generated circuit
is almost identical to the input one, except for a few layers that are folded to amplify their noise sensitivity. For each resulting
circuit (Equation (4)), we experimentally estimate the respective expectation value (Equation (9)). The linear combination
coefficients {ηj} can be computed straightforwardly from the multivariate Lagrange interpolation formula (Equation (20)) and,
remarkably, they only depend on the scale factor vectors. By taking a linear combination of the noise-scaled expectation values,
we obtain the error-mitigated result.

factor vector, while each column corresponds to a specific
monomial. The interpolation problem can be cast as a
linear system,

Ac = z, (17)

where z is the known vector of noise-scaled expectation
values as defined in Equation (9) and c = (c1, . . . , cM )T

is the unknown vector of coefficients defined in Equa-
tion (13). In principle, solving for c, one can determine
all the coefficients of the interpolating polynomial, which
can be used to evaluate new domain points, including
the zero-noise limit (⟨O(0)⟩ = c1). However, if we are
only interested in the zero-noise limit, it is not necessary
to evaluate the full vector of coefficients c. We will use
the theory of Lagrange interpolation to obtain a simple
formula that directly provides the zero-noise limit.

To have a unique solution for the system of equations,
we assume that the sample matrix is square and that its
determinant is non-zero. This implies that the number
N of different scale factor vectors is not arbitrary but it
must be equal to the number of monomials, i.e.,

N = M and det (A(Λ, d)) ̸= 0. (18)

In practice, for a given number of layers ℓ and a given
degree d of the interpolating polynomial, the number of
different noise scaling configurations and the number of
different expectation values that one needs to measure is
given by Equation (11). Note that assuming det(A) ̸= 0
is not a strong limitation since, in the case of a zero (or
close to zero) determinant, one can always change some
of the scale factor vectors in such a way to avoid an ill-
conditioned system of equations.
By a direct application of the theory of multivariate

Lagrange interpolation (as shown in Appendix VB), we
can obtain the zero-noise limit via the following linear
combination of the noisy expectation values

OLRE =

M∑
i=1

ηi⟨O(λi)⟩, (19)

where the coefficients are given by

ηi =
det (Mi)

det (A)
, (20)

where Mi is the matrix obtained from A after replacing
the i-th row by the vector e1 = (1, 0, . . . , 0) consisting of
a 1 followed by zeros.
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C. Applying LRE to chunks of the circuit

As we anticipated in Section IIA, if instead of decom-
posing the circuit into a sequence of elementary layers (of
depth one) we split the circuit into chunks of arbitrary
depth, the whole theory of LRE is equally applicable. In-
deed, in the theoretical derivation developed in the pre-
vious sections, we never had to invoke any assumption
on the actual depth of each term Lk in Equation (1).

In practice, this means that the total number of chunks
l in Equation (1) is an arbitrary hyperparameter of LRE
that we are free to choose at our convenience. This flex-
ibility allows us to interpolate from l = 1 corresponding
to traditional (single-chunk) RE, up to l = lmax, where
lmax is the maximum number of elementary layers of the
circuit.

Operationally, given a circuit C of depth lmax and a
target observable O, the implementation of LRE corre-
sponds to the following protocol (see also Figure 2):

1. Choose the hyperparameters: the extrapolation or-
der d, the number of splittings l ≤ lmax, and the
minimum noise scaling gap ∆. By default, use
∆ = 2 (minimum gap allowed by unitary folding).
See Section IID for more details on hyperparame-
ters.

2. Compute the numberM of degrees of freedom using
Equation (11).

3. Choose M different vectors of scale factors
λ1,λ2, . . . ,λM . A simple choice is the following

λi = 1+mi∆, i = 1, 2, . . . ,M, (21)

where 1 = (1, 1, . . . ) and {mi} are all the vectors
of l non-negative integers with ∥mi∥1 ≤ d.

4. Evaluate the corresponding M real coefficients
η1, η2, . . . , ηM using Equation (20).

5. Split C into l chunks and apply layerwise folding
as defined in Equations (5-8), generating M noise-
scaled circuits Cλ1 , Cλ2 , . . . , CλM .

6. Evaluate the corresponding M expectation val-
ues ⟨O(λ1)⟩, ⟨O(λ2)⟩, . . . , ⟨O(λM )⟩ on the quan-
tum computer.

7. Compute the error-mitigated result using OLRE =∑M
i=1 ηi⟨O(λi)⟩.

Note that only Step 6 of the above protocol involves
the actual usage of a quantum computer, all the other
steps are just classical pre- or post-processing.

D. Sampling overhead of LRE

The error-mitigated expectation value obtained from
layerwise Richardson extrapolation is subject to statis-
tical uncertainty. Each noisy expectation value in the

right-hand side of Equation (19) must be measured with
a finite number of shots and, therefore, each term will be
subject to a statistical error (shot noise). After taking
the linear combination, the left-hand side of the equa-
tion will be subject to statistical uncertainty due to the
propagation of the statistical error of each term on the
right-hand side.
For a fixed target of statistical error, the total number

of shots stot required to evaluate Equation (19) is larger
than the number of shots su required to directly estimate
the unmitigated expectation value ⟨O(λ)⟩|λ=1. The sam-
pling overhead required to apply LRE is captured by the
ratio stot/su. Assuming all the noisy expectation values
of Equation (19) have equal variance and that they are
measured with the same number of shots stot/M , it is
easy to show [9] that:

c̃ :=
stot
su

= Mγ̃2, γ̃ :=

(
M∑
i=1

|ηi|2
) 1

2

, si =
stot
M

. (22)

However, the sampling overhead can be reduced by us-
ing more shots on the terms that are more “important”
in the linear combination of Equation (19). For a fixed
total budget of shots stot, it is more convenient to in-
vest si ∝ |ηj | shots when estimating each noise-scaled
expectation value ⟨O(λi)⟩. In this case, we have [9, 11]:

c :=
stot
su

= γ2, γ :=

M∑
i=1

|ηi|, si =
stot|ηi|

γ
. (23)
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Figure 3. Sampling overhead of layerwise Richardson extrap-
olation for quadratic (d = 2) and linear (d = 1) interpolation
as a function of the number of layers (or circuit chunks). The
overhead is estimated according to Equation (23) assuming
the specific choice of scale factors given in Equation (21), with
∆ = 2 (the minimum gap achievable via layerwise folding).
The noise of each circuit chunk is scaled by local folding as
defined in Equation (7).

The fact that the one norm γ of the linear combina-
tion of coefficients in (19) is related to the error mit-
igation overhead is well-known in the error mitigation
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literature [9, 11, 44], and it is a consequence of Hoeffd-
ing’s inequality applied within the context of probabilis-
tic Monte-Carlo algorithms. Here we have just confirmed
that the same result also holds for deterministic LRE, as-
suming that each expectation value in (19) is measured
with the appropriate number of shots. As a direct conse-
quence of the Cauchy-Schwartz inequality (see e.g. [9]),
we have c̃ > c, meaning that Equation (23) is the ap-
propriate figure of merit for the optimal sampling cost.
On the other hand, in real experiments, it can be more
practical to estimate noisy expectation values with the
same number of shots stot/M for each noise-scaled cir-
cuit. In this case, c̃ is a more appropriate estimate of the
sampling cost.

In Figure 3 we plot c as a function of the number of
layers (or circuit chunks) l and for different values of the
extrapolation order d. In this figure, we keep fixed the
minimum gap between scale factors ∆ = 2, correspond-
ing to the minimum gap of noise scaling achievable with
folding operations.

1. Methods for reducing the sampling overhead

In Figure 4, we fix l = 10 and show the dependence
of the sampling overhead as a function of the minimum
gap between scale factors ∆ = 2, 4, 6, . . . corresponding
to a gap in the number of folding operations equal to
1, 2, 3, . . . , respectively (see Equation (5)). We observe
that using a large gap between scale factors reduces the
sampling cost. On the other hand, high values of noise
scaling can increase the bias of the polynomial extrapola-
tion, since the noisy expectation value is sampled further
away from the zero-noise limit. Therefore, by altering ∆
one can change the variance-bias tradeoff of the error-
mitigated result.

Another simple way of reducing the overhead is by
splitting the full circuit into a smaller number of chunks
l, where each chunk contains multiple elementary layers.
From Figure 3, it is clear that using a small value of l is
a direct way of reducing the sampling cost.

In practice, even for very deep circuits, we can always
keep the overhead of LRE under control by setting an
upper bound to the number of splittings l or by increas-
ing ∆, at the cost of increasing the estimation bias (see
Sections IIIA 4 and IIIA 5 for numerical examples).

III. NUMERICAL EXPERIMENTS

In the previous section, we presented the theory of lay-
erwise Richardson extrapolation. In this section, we test
the technique with several numerical experiments to un-
derstand its practical advantages and its limitations. In
particular, we focus on a systematic comparison between
LRE and traditional single-variable Richardson extrapo-
lation (RE).
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Figure 4. Sampling overhead of layerwise Richardson extrap-
olation for quadratic (d = 2) and linear (d = 1) interpolation
as a function of the minimum gap between scale factors ∆.
For both curves, we assume the same number of layers (or
circuit chunks) l = 10. The vectors of scale factors are chosen
according to Equation (21).

A convenient choice of circuits for benchmarking er-
ror mitigation strategies are those which, without noise,
restore all the qubits to the initial state |00 . . .⟩. In this
case, by taking as a target observable the projector on the
zero state, i.e. O = |00 . . .⟩⟨00 . . . |, the ideal expectation
value is always equal to 1 for a noiseless quantum com-
puter. For a noisy backend instead, we can quantify the
performance of different mitigation strategies by check-
ing how close their associated predictions are to the ideal
value of 1. For all of the quantum circuits simulated in
this section, we assume a local amplitude damping noise
model as described in Appendix VA.
In our analysis, we always fix the same total budget

of shots stot that must be used by each error mitiga-
tion strategy (trivial unmitigated, LRE, RE, etc.). This
means that if an error mitigation technique requires run-
ning M circuits, the total budget of shots is optimally
split among the M circuits such that the total sum of

circuit executions is kept constant, i.e.
∑M

i=1 si = stot.
For both LRE and RE, we use the optimal splitting si
defined in Equation (23) (recalling that RE is a special
case of LRE with l = 1). If not explicitly specified, we
fix a total budget of stot = 106 shots.

A. Benchmarking LRE with GHZ-like circuits

The first type of benchmark circuit that we use to test
LRE is based on the concatenation of a GHZ circuit fol-
lowed by its inverse, as shown in Figure 5.

The intermediate states during the execution of a
GHZ-like circuit are highly entangled and, therefore,
highly sensitive to environmental noise and decoherence.
For this reason, they provide a good playground for test-
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|0⟩1 · · ·

|0⟩2 · · ·
|0⟩3 · · ·
· · · · · ·

|0⟩n−1 · · ·

|0⟩n · · ·

H H

Figure 5. A GHZ-like benchmarking circuit composed of an
n-qubit GHZ circuit followed by its inverse. By construction,
the expectation value of O = |00 . . .⟩⟨00 . . . | evaluated on an
ideal noiseless device is equal to 1.

ing the efficacy of LRE on structured, entangling circuits.

1. Vary over number of layers

In Figure 6 and Table I, we compare the performance
of LRE relative to RE and the unmitigated case as the
number of layers l increases (the number of qubits in-
creases as well since l = 2n).
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Figure 6. Expectation value of the observable O =
|00 . . .⟩⟨00 . . . | estimated with different error mitigation
strategies for a GHZ-like circuit as defined in Figure 5. Each
data point is averaged over 10 trials. For each trial, a to-
tal budget of stot = 106 shots is used. Error bars for each
data point represent the standard deviation over the 10 in-
dependent trials. For all the data points considered in this
example, layerwise Richardson extrapolation (LRE) is more
accurate than traditional single-variable Richardson extrapo-
lation (RE) and direct unmitigated estimation.

Increasing the size of a GHZ circuit elevates its com-
plexity and susceptibility to errors. As expected, the
estimation error increases with l for all the results but,
for each l, the expectation value estimated with LRE is
closer to the ideal value. Error bars are evaluated by re-
peating the same experiment for 10 trials and computing
the standard deviation of the results. We observe that

LRE results are subject to higher statistical uncertainty.
This is expected from the overhead analysis presented in
Section IID and from Figure 3: the error mitigation cost
c of LRE increases with the number of layers (or circuit
chunks) and, for a fixed budget of shots stot = 106, this
implies a proportional increase of the statistical variance.
Note however that, even taking into account error bars,
the overall estimation error of LRE is smaller than RE
due to a strong reduction of the estimation bias.

Depth Unmitigated RE LRE Improvement
2 0.2078 0.0306 0.0174 75.41%
3 0.3483 0.1107 0.0390 183.75%
4 0.4599 0.2110 0.0662 218.79%
5 0.5495 0.3121 0.0906 244.34%
6 0.6206 0.4058 0.1640 147.40%
7 0.6789 0.4856 0.2130 127.98%
8 0.7261 0.5546 0.2607 112.76%

Table I. Table of mean absolute estimation errors for each
data point reported in Figure 6. The last column provides a
percentage of improvement for the performance of layerwise
Richardson extrapolation (LRE) over single-variable Richard-
son extrapolation (RE).

2. Vary over extrapolation order
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Figure 7. Expectation value estimated with layerwise
Richardson extrapolation (LRE) and single-variable Richard-
son extrapolation (RE) for different values of the extrapo-
lation degree d (linear, quadratic, cubic). As a benchmark
circuit we used a 4-qubit GHZ-like circuit having the struc-
ture shown in Figure 5 and as observable we used O =
|00 . . .⟩⟨00 . . . |.

In Figure 7, we explore how the performance of LRE
and RE varies with the extrapolation order d, i.e., the
degree of the interpolating polynomial. Specifically, for
both LRE and RE, we compare the results obtained via
linear, quadratic, and cubic extrapolation. As expected,
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the bias of both LRE and RE decreases with the extrap-
olation order d. However, statistical noise increases (ex-
ponentially) with d. In practice, for real-world use cases,
we expect LRE and RE to be useful for 1 ≤ d ≤ 3, since
large values of d are subject to the instabilities typical of
high-order polynomial interpolation.

For applications where high fidelity is paramount, and
resource constraints are less stringent, high extrapola-
tion orders (e.g. quadratic or cubic) may be preferable.
Conversely, for more resource-constrained environments
or where moderate improvements in fidelity are sufficient,
low extrapolation orders (e.g. linear) might be more suit-
able.

3. Vary over number of shots

In the previous simulations, for each expectation value
estimation, we used a fixed budget of stot = 106 shots
(total number of circuit executions). We now analyze
what happens if we vary stot. The results are depicted
in Figure 8.

Increasing the number of shots induces a reduction of
the statistical variance for any estimation strategy (un-
mitigated, LRE, RE). However, we observe that LRE is
much more sensitive to statistical noise and, as a conse-
quence, to the number of shots. For a small number of
shots, the statistical variance of LRE is too large to pro-
duce a reliable estimation. In this regime, one could try
to reduce the overhead of LRE by reducing the number
of chunks l or by increasing the gap ∆ between scale fac-
tors. As the number of shots increases, the performance
of LRE stabilizes, yielding more consistent and reliable
results.
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Figure 8. Expectation value of the observable O =
|00 . . .⟩⟨00 . . . | estimated with different error mitigation
strategies for a 6-qubit GHZ-like circuit as defined in Fig-
ure 5. Each data point is averaged over 10 trials. For each
trial, we use a budget of shots as reported in the horizontal
axis. The error bars in each data point illustrate the standard
deviation over the different trials.

4. Vary over the gap between scale factors

This section delves into the impact of increasing the
minimum gap ∆ between noise scale factors, as a way
of reducing statistical noise at the cost of increasing the
estimation bias. The results are presented in Figure 9.
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Figure 9. Expectation value estimated with increasing gap
∆ between scale factors, for an 8-qubit GHZ-like circuit. We
assume a fixed and limited number of shots stot = 105 for any
estimation strategy. The error bars are obtained by calculat-
ing the standard deviation over the 10 trials.

From our previous analysis of the sampling overhead
of LRE, we know that increasing the gap between noise
scale factors reduces the sampling cost (see Figure 4).
Equivalently, for a fixed number of shots stot, we ex-
pect a reduction of statistical noise for larger values of
∆. This is indeed what we observe for LRE in Figure 9,
where error bars get smaller for increasing ∆. A similar
reduction is also present for single-variable RE but, error
bars are too small to be visible in the plot. In Figure 9 we
also see the drawback of using a large gap between noise
scale factors: the bias of the associated extrapolation in-
creases due to stronger noise amplification. For practical
scenarios, we expect that the net effect of increasing ∆
is typically not a convenient strategy when using tradi-
tional RE, but it can help when using LRE due to its
larger sampling cost.

5. Vary over the number of circuit chunks

Finally, we explore the influence of varying the number
of circuit chunks l on the estimation accuracy of LRE.
As discussed in Section IIC, we are not forced to apply
LRE to depth-1 layers, but we can apply it to multi-
layer chunks of the input circuit. This implies that we
are free to split the circuit into an arbitrary number l =
1, 2, . . . , lmax of chunks, where the upper limit lmax is the
total number of depth-1 layers.

In Figure 10, we apply LRE to an 8-qubit GHZ-like



9

1 3 5 7 9 11 13 15 16
Number of chunks l

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
E

x
p

ec
ta

ti
on

va
lu

e
Ideal value

Unmitigated

RE

LRE

Figure 10. Expectation value estimation via layerwise
Richardson extrapolation (LRE) as a function of the number
of chunks into which the input circuit is split (as proposed
in Section II C). As a benchmark circuit, we use an 8-qubit
GHZ-like circuit. The blue line represents the unmitigated
expectation value, the orange line depicts the result of ap-
plying single-variable RE, and the green triangles show the
results after applying LRE. As expected, LRE reduces to RE
for l = 1. Error bars report the standard deviation over 10
trials.

circuit assuming a splitting of the circuit into a different
number of chunks. In practice, for each l, we split the
circuit into l chunks of approximately equal depth (up to
a rounding error of at most a single layer). Afterward, we
apply LRE in the same way as in the previous examples
but, instead of associating a noise scale factor to each
depth-1 layer, we associate a scale factor to each chunk.
For each circuit chunk, we use local folding as defined in
Equation (7) (also employed for RE).

By construction, LRE reduces to RE for l = 1. For
larger values of l, we observe a significant reduction of
the bias for LRE. We also observe an increase in statis-
tical noise for large l, as expected. The overall interpre-
tation of Figure 10 is that, if we can afford the sampling
overhead, it is always convenient to increase l. However,
we also expect that for deeper circuits (e.g. lmax > 100)
the complexity and the sampling cost of applying LRE
at the level of single layers may become too large such
that applying LRE on a smaller number of multi-layer
chunks is a more pragmatic solution.

B. Benchmarking LRE with randomized circuits

In this subsection, we use a different benchmark circuit
to test the error mitigation performance of LRE. Instead
of the GHZ-like circuit used in the previous examples, we
use randomized circuits having the following structure:

C = C−1
randCrand, (24)

where Crand is a random circuit obtained via a random-
ized application of single-qubit gates (H,X, Y, Z, S, T )
and CNOT gates. An instance of Crand is shown in Fig-
ure 11. To increase the amount of entanglement dur-
ing the circuit execution, we assign a high probabilistic
weighting to CNOT gates (pCNOT = 0.9), thus ensuring
a high density of CNOT gates in the benchmark circuits.

|0⟩1
|0⟩2
|0⟩3
|0⟩4

H

Y

Figure 11. An example of a randomly generated 4-qubit cir-
cuit Crand, with high CNOT density. Not that the actual
circuit used to benchmark LRE is C = C−1

randCrand.

Unlike GHZ-like circuits in which the depth is implied
by the number of qubits, for the randomized circuits con-
sidered in this subsection, we are free to independently
vary the number of qubits and the number of layers. This
freedom allows us to explore the performance of LRE
when varying the number of qubits (at constant depth).

Figure 12 presents a comparative analysis of the er-
ror mitigation performance when varying the number of
qubits. The plot aggregates results obtained across 10
randomly generated circuits. The results are qualita-
tively similar to the GHZ-like case reported in Figure 6,
in the sense that LRE outperforms both single-variable
RE and the trivial unmitigated estimation. However, we
also notice an important difference: error bars do not
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Figure 12. Expectation value of the observable O =
|00 . . .⟩⟨00 . . . | estimated with different error mitigation
strategies for a randomized circuit as defined in Equation (24)
having total depth lmax = 4. Each data point is averaged over
10 different random instances of the benchmark circuit. Error
bars for each data point represent the standard deviation over
the 10 random instances. For each circuit, a total budget of
stot = 106 shots is used.
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grow when increasing the number of qubits. This is a
characteristic feature of Richardson extrapolation (both
LRE and RE), for which the sampling overhead only de-
pends on the choice of noise scale factors. This implies
that the overhead of LRE depends only on the depth l
(or number of circuit chunks) but not on the number of
qubits. Even if the statistical variance is constant con-
cerning the number of qubits, the bias of all estimation
strategies (LRE, RE, unmitigated) gets larger for wider
circuits.

IV. DISCUSSION

We introduced layerwise Richardson extrapolation
(LRE), an error mitigation technique inspired by
conventional (single-variable) Richardson extrapolation
(RE) [11–13] but generalized to a framework in which
the errors acting on different layers of a circuit can be
amplified independently. We then presented several nu-
merical experiments in which we compared LRE against
conventional RE and direct unmitigated estimation.

Our findings suggest that LRE can be a convenient
technique for practical applications since it presents sev-
eral advantages (low bias, flexible sampling cost, noise-
model agnostic). The main limitations of LRE are its
statistical uncertainty (higher than RE) and the require-
ment of running a significant number of different circuits
(similar to PEC [11, 12]). We also explored different ways
of reducing the sampling cost, such as increasing the gap
between scale factors or reducing the number of circuit
splittings, that can be useful for controlling the balance
between error mitigation bias and sampling cost in large-
scale experiments. From a theoretical perspective, LRE
also provides a general multivariate formalism in which
previous techniques are recovered as special limits. For
example, LRE reduces to conventional RE for l = 1 and
to the noise-scaling version of the NOX protocol [40] for
d = 1.
The new technique proposed in this work opens up

avenues for further research. In our examples, we consid-
ered numerical experiments based on a simple amplitude-
damping noise model. It would be interesting to nu-
merically investigate other noise models or, even bet-
ter, test LRE on real hardware. An aspect worth
exploring is the design of suitable calibration experi-
ments [25, 36, 37, 40, 45] to estimate the noise levels
of different layers or to determine the optimal hyperpa-

rameters of the LRE protocol, given a specific backend.
For example, one could run calibration experiments to
optimize the noise scaling gap ∆, the number of circuit
splittings l, and the extrapolation order d.
An interesting analysis would be an experimental com-

parison between LRE and PEC [11, 12]. In theory, PEC
can provide a more tailored error mitigation, since it is
a noise-aware technique while LRE is noise-agnostic. In
practice, however, it is not obvious what technique is
more competitive in a real-world scenario [32]. PEC re-
quires many noise characterization experiments [25, 40]
that are known to be complex, costly, and subject to im-
perfections which have a strong impact on the quality of
the final result. LRE is instead simpler and perhaps more
robust to imperfections since, by construction, the exe-
cuted circuits are generated according to a noise-agnostic
and deterministic protocol.
Inspired by the PEC protocol, a future direction worth

exploring is the probabilistic implementation of LRE.
Rather than executing all the M circuits necessary for
computing the sum in Equation (19), a Monte Carlo
method employing importance sampling could be uti-
lized. This approach would selectively and probabilis-
tically evaluate only a subset of the terms in the full sum
and could potentially extend the applicability of LRE to
more layers l and to higher orders d.

CODE AVAILABILITY

Software that implements the LRE method along with
the code that is used to generate the data and plots in
this work is available in [46].
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V. APPENDIX

A. Noise model for experiments

For the experiments in Section III, we consider a noise model characterized by amplitude damping errors. Let the
probability of amplitude damping error for a single qubit and two-qubit gate be denoted as p1 and p2 respectively,
with p1 = 0.04 and p2 = 0.08. The single-qubit amplitude damping channel is represented as

E1(ρ) = E0ρE
†
0 + E1ρE

†
1 (25)

where,

E0 =

[
1 0
0

√
1− p1

]
and E1 =

[
0

√
p1

0 0

]
. (26)

This channel is added to all single-qubit gates. For the two-qubit CNOT gate, we apply the tensor product of two
single-qubit channels,

E2(ρ) =
∑

i∈{0,1}

∑
j∈{0,1}

Ei ⊗ Ej ρE
†
i ⊗ E†

j , (27)

where we replace p1 in Equation (26) with p2 = 0.08 . We use the Qiskit Aer simulator [47] to simulate circuits with
the above noise model.

B. Multivariate Lagrange interpolation in LRE

Single-variable Lagrange interpolation constructs a single-variable polynomial to fit a set of N points in R2 [48].
In the case of multivariate Lagrange interpolation, this approach is extended to handle the multivariate polynomial
interpolation of points in higher-dimensional spaces. Here, for a set of N points of a polynomial with l variables,
the interpolation is conducted in Rl+1 [38, 39]. In this appendix we adapt the mathematical formalism of Lagrange
interpolation of [38] to the specific notation of the LRE framework introduced in Section II B.

We aim to find the interpolating l-variable polynomial passing through a set of N points representing the noise-
scaled expectation values of an observable. Each of these points corresponds to a circuit execution under a specific
noise scaling, captured by a vector λ containing l real scale factors, corresponding to the amount of noise scaling
applied to the l-th layer of the circuit. Given the N measured points, we define the set of scale factor vectors as
Λ = {λ1,λ2, . . . ,λN} and the array of the associated expectation values as

z = (⟨O(λ1)⟩, ⟨O(λ2)⟩, . . . , ⟨O(λN )⟩)T . (28)

The most general l-variable polynomial of degree d can be written as

P (λ) =

M∑
j=1

cjMj(λ, d), (29)

where {cj} are real coefficients and {Mj(λ, d) : j = 1, 2, . . . ,M} is the set of all l-variable monomials of degree at

most d. The number of monomials is given by M =
(
d+l
d

)
and is therefore fixed by l and d. The interpolation problem

corresponds to determining the M unknown coefficients {cj} such that the polynomial passes through the measured
points, i.e.:

P (λi) = ⟨O(λi)⟩ = zi, ∀λi ∈ Λ. (30)

Define the following sample matrix which contains the values of all monomials evaluated at each scale factor vector
in Λ:

A(Λ, d) =


M1(λ1, d) M2(λ1, d) · · · MM (λ1, d)
M1(λ2, d) M2(λ2, d) · · · MM (λ2, d)

...
...

. . .
...

M1(λN , d) M2(λN , d) · · · MM (λN , d)

 . (31)
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If we cast the coefficients of the polynomial in a vector c = (c1, c2, . . . , cM )T, the interpolation problem can be
expressed as the following linear system:

Ac = z. (32)

To have a unique solution, we assume N = M and det(A) ̸= 0. In practice, given l and d, this is a constraint on the
number and the values of the scale factor vectors in the set Λ that is straightforward to check and satisfy.

One way of determining the interpolating polynomial would be to solve for c and to replace the solution into
Equation (29). There is however an alternative way, which does not require the explicit computation of c and is given
by the following Lagrange interpolation formula [38]:

P (λ) =

M∑
i=1

⟨O(λi)⟩
det (Mi(λ))

det (A)
, (33)

where Mi(λ) is the matrix obtained by substituting the i-th row of the sample matrix A with the same row of
monomials but evaluated on the generic polynomial variable λ (instead of λi ∈ Λ), for example:

M2(λ) =


M1(λ1, d) M2(λ1, d) · · · MM (λ1, d)
M1(λ, d) M2(λ, d) · · · MM (λ, d)

...
...

. . .
...

M1(λN , d) M2(λN , d) · · · MM (λN , d)

 . (34)

By construction, the right-hand side of Equation (33) is a polynomial in the variable λ of degree at most d. Moreover,
it is easy to check that it also interpolates all points since, if we evaluate the expression at a specific λj ∈ Λ, we have

P (λj) =

M∑
i=1

⟨O(λi)⟩
det (Mi(λj))

det (A)
= ⟨O(λj)⟩

det (Mj(λj))

det (A)
= ⟨O(λj)⟩

det (A)

det (A)
= ⟨O(λj)⟩, (35)

where we used that, for i ̸= j, det (Mi(λj)) = 0 since the i-th row and the j-th row are equal.
Evaluating Equation (33) at the zero-noise limit (denoted as λ = 0), we get:

OLRE = P (0) =

M∑
i=1

⟨O(λi)⟩
det (Mi(0))

det (A)
. (36)

The matrix Mi(0) can be obtained from the sample matrix A after replacing the i-th row by the array e1 =
(1, 0, . . . , 0)T, since all monomials are zero at λ = 0, with the exception of the constant one M1(0, d) = M1(λ, d) = 1.
Here, we implicitly assumed that monomials are ordered with increasing degree. Otherwise, the element 1 in the
vector e1 should be shifted to the position associated with the zero-order monomial. Equation (36) corresponds to
Equations (19) and (20) of the main text.
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