Limitations on separable measurements by convex optimization

Alessandro Cosentino ² Nathaniel Johnston ² Vincent Russo ² John Watrous ² Nengkun Yu ^{2,3} Somshubhro Bandyopadhyay¹

¹Department of Physics and Center for Astroparticle Physics and Space Science, Bose Institute, India

²Institute for Quantum Computing, University of Waterloo, Canada

³Department of Mathematics and Statistics, University of Guelph, Canada

arXiv:1408.6981

State discrimination	Cone Programming	Applications
The problem is specified by an ensemble	• A generalization of linear and semidefinite programming	
$\{(p_1, \rho_1), \dots, (p_N, \rho_N)\},\$	Primal problem (opt value α)	Unextendable Product Sets
where		Definition A set of mutually orthogonal product states
• N is a positive integer;	maximize: $\langle A, X \rangle$	s.t. it is impossible to find a nonzero product vector
• (p_1, \ldots, p_N) is the probability vector;	subject to: $\Phi(X) = B$,	that is orthogonal to every element of the set.
• $\rho_1, \ldots, \rho_N \in D(\mathcal{X} \otimes \mathcal{Y})$ are density operators.	$X \in \mathcal{K}.$	Our results
		• An easily checkable characterization of when an

Problem

With respect to the probability vector (p_1, \ldots, p_N) , an index $k \in \{1, \ldots, N\}$ is selected at random, and Alice and Bob are given the quantum state ρ_k for the selected index k. Their goal is to determine the index k of the given state ρ_k by means of Local quantum Operations and Classical Communication (LOCC).

Typical assumptions:

- States are orthogonal
- Focus on perfect distinguishability
- Drawn from a uniform probability distribution

Example

• The four Bell states form a locally indistinguishable set.

Dual problem (opt value β)

```
minimize:
                     \langle B, Y \rangle
subject to: \Phi^*(Y) - A \in \mathcal{K}^*,
                     Y \in \operatorname{Herm}(\mathcal{W}).
```

- Dual cone is defined as follows: $\mathcal{K}^* = \{ Y \in \text{Herm}\left(\mathcal{Z}\right) : \langle X, Y \rangle \ge 0 \text{ for all } X \in \mathcal{K} \}$
- Linear programming: \mathcal{K} is the positive orthant of \mathbb{R}^n • Semidefinite programming: $\mathcal{K} = Pos(\mathbb{C}^n)$, the cone of positive semidefinte operators.

Weak Duality Theorem: For every cone program, $\alpha \leq \beta$.

Optimizing over separable measurements

The maximum probability of distinguishing a set of states $\{\rho_1, \cdots, \rho_N\}$ by separable measurements can be expressed as the optimal value of a cone program:

Primal problem

unextendable product set is perfectly discriminated by separable measurements.

• The first example of an unextendable product set that cannot be perfectly discriminated by separable measurements – in $\mathbb{C}^4 \otimes \mathbb{C}^4$.

- A proof that every unextendable product set together with one extra pure state orthogonal to every member of the unextendable product set is not perfectly discriminated by separable measurements.
- Related to a family of linear maps of Terhal.

Bell states

Our Result An optimal bound on the *entanglement* cost necessary to distinguish 3 or 4 Bell states.

- Related to a new family of positive linear maps.
- The lower bound is given by a standard

 $|\psi_0\rangle = |0\rangle_{\mathcal{X}} |0\rangle_{\mathcal{Y}} + |1\rangle_{\mathcal{X}} |1\rangle_{\mathcal{Y}}$ $|\psi_1\rangle = |0\rangle_{\mathcal{X}} |0\rangle_{\mathcal{Y}} - |1\rangle_{\mathcal{X}} |1\rangle_{\mathcal{Y}}$ $|\psi_2\rangle = |0\rangle_{\mathcal{X}}|1\rangle_{\mathcal{Y}} + |1\rangle_{\mathcal{X}}|0\rangle_{\mathcal{Y}}$ $|\psi_3\rangle = |0\rangle_{\mathcal{X}} |1\rangle_{\mathcal{Y}} - |1\rangle_{\mathcal{X}} |0\rangle_{\mathcal{Y}}$

• Optimal probability of distinguishing them is 1/2. [1]

PPT and separable measurements

Partial transpose $X \in L(\mathcal{X} \otimes \mathcal{Y}), T_{\mathcal{X}}(X) = (T \otimes \mathbb{1}_{\mathcal{Y}})(X)$ **Positive-partial-transpose operator** $P \ge 0$ such that $T_{\mathcal{X}}(P) \geq 0$ (symmetric w.r.t. \mathcal{X} and \mathcal{Y})

Separable operator

 $P = \sum_{k=1}^{M} Q_k \otimes R_k \in \operatorname{Sep} \left(\mathcal{X} : \mathcal{Y} \right),$ for some choice of a positive integer M and positive semidefinite operators $Q_1, \ldots, Q_M \in Pos(\mathcal{X})$ and $R_1,\ldots,R_M\in \operatorname{Pos}\left(\mathcal{Y}\right);$ Separable (or PPT) measurement

 $\{P_1,\ldots,P_N\}$

such that

 $\bullet P_1 + \cdots + P_N = 1$ • each $P_k \in \text{Sep}(\mathcal{X} : \mathcal{Y})$ (or $P_k \in \text{PPT}(\mathcal{X} : \mathcal{Y})$,

respectively)

maximize: $p_1 \langle \rho_1, P_1 \rangle + \cdots + p_N \langle \rho_N, P_N \rangle$ subject to: $P_1 + \cdots + P_N = \mathbb{1}_{\mathcal{X} \otimes \mathcal{Y}}$ $P_k \in \operatorname{Sep}\left(\mathcal{X} : \mathcal{Y}\right),$ for each $k = 1, \ldots, N$.

Dual problem

minimize: $\operatorname{Tr}(H)$ subject to: $H - p_k \rho_k \in \operatorname{Sep}^*(\mathcal{X} : \mathcal{Y}),$ for each $k = 1, \ldots, N$, $H \in \operatorname{Herm}\left(\mathcal{X} \otimes \mathcal{Y}\right).$

Block-positive operators

Def. 1 Sep^{*} $(\mathcal{X} : \mathcal{Y}) =$ $\{H \in \operatorname{Herm}\left(\mathcal{X} \otimes \mathcal{Y}\right) : (x^* \otimes y^*) H(x \otimes y) \ge 0$ $\forall x \in \mathcal{X}, y \in \mathcal{Y} \}.$ **Def. 2** Choi representations of *positive* linear maps

teleportation protocol.

Yu–Duan–Ying states

Definition A set of 4 locally indistinguishable maximally entangled states in $\mathbb{C}^4 \otimes \mathbb{C}^4$ [4]. **Our Result** An optimal bound of 3/4 to distinguish the states by separable measurements.

• Connected to the positive maps of Breuer and Hall [5, 6].

Open Problems

- Entanglement cost to distinguish maximally entangled states in $\mathbb{C}^n \otimes \mathbb{C}^n$
- Are two copies sufficient to discriminate any set of orthogonal pure states?

References

[1] S. Ghosh, G. Kar, A. Roy, A. Sen(De), and U. Sen. Physical Review Letters, 87(27):277902, 2001.

[2] K. Feng. Discrete and Applied Mathematics,

Classes of Measurements

LOCC – mathematically difficult object to characterize Separable – optimizing over this set is NP-hard **PPT** – efficient optimization via SDP

Cone programming formulation

Analytically

- Many known families of positive linear maps
- Actual quantitative bounds

Computationally

- Optimizing over separable operators is NP-hard
- We can approximate the cone program by a hierarchy of SDPs based on symmetric extensions

- 154(6):942-949, 2006.
- [3] B. Terhal. Linear Algebra and its Applications, 323(1):61-73, 2001.
- [4] N. Yu, R. Duan, and M. Ying. *Physical Review* Letters, 109(2):020506, 2012.
- [5] H. Breuer. *Physical Review Letters*, 97(8):080501, 2006.
- [6] W. Hall. Journal of Physics A: Mathematical and General, 39(45):14119, 2006.

Acknowledgments

This research was supported by the DST-SERB project SR/S2/LOP-18/2012, CIFAR, Canada's NSERC, the US ARO, and the David R. Cheriton Graduate Scholarship.

