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State discrimination

The problem is specified by an ensemble
{(p1, ρ1), . . . , (pN , ρN)} ,

where
•N is a positive integer;
• (p1, . . . , pN) is the probability vector;
•ρ1, . . . , ρN ∈ D (X ⊗ Y) are density operators.

Problem

With respect to the probability vector (p1, . . . , pN), an
index k ∈ {1, . . . , N} is selected at random, and Alice
and Bob are given the quantum state ρk for the selected
index k. Their goal is to determine the index k of the
given state ρk by means of Local quantum Operations
and Classical Communication (LOCC).
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Typical assumptions:
•States are orthogonal
•Focus on perfect distinguishability
•Drawn from a uniform probability distribution

Example
•The four Bell states form a locally indistinguishable set.

|ψ0〉 = |0〉X |0〉Y + |1〉X |1〉Y
|ψ1〉 = |0〉X |0〉Y − |1〉X |1〉Y
|ψ2〉 = |0〉X |1〉Y + |1〉X |0〉Y
|ψ3〉 = |0〉X |1〉Y − |1〉X |0〉Y

•Optimal probability of distinguishing them is 1/2. [1]

PPT and separable measurements

Partial transposeX ∈ L (X ⊗ Y) , TX (X) = (T⊗1Y)(X)
Positive-partial-transpose operatorP ≥ 0 such that

TX (P ) ≥ 0 (symmetric w.r.t. X and Y)

Separable operator

P =
M∑
k=1

Qk ⊗Rk ∈ Sep (X : Y) ,

for some choice of a positive integer M and positive
semidefinite operators Q1, . . . , QM ∈ Pos (X ) and
R1, . . . , RM ∈ Pos (Y);

Separable (or PPT) measurement
{P1, . . . , PN}

such that
•P1 + · · · + PN = 1

• each Pk ∈ Sep (X : Y) (or Pk ∈ PPT (X : Y),
respectively)

Classes of Measurements

Global

PPT

Sep

LOCC

LOCC– mathematically difficult object to characterize
Separable– optimizing over this set is NP-hard
PPT– efficient optimization via SDP

Cone Programming

•A generalization of linear and semidefinite programming

Primal problem (opt value α)

maximize: 〈A,X〉
subject to: Φ(X) = B,

X ∈ K.

Dual problem (opt value β)

minimize: 〈B, Y 〉
subject to: Φ∗(Y )− A ∈ K∗,

Y ∈ Herm (W) .

•Dual cone is defined as follows:
K∗ = {Y ∈ Herm (Z) : 〈X, Y 〉 ≥ 0 for all X ∈ K}

•Linear programming: K is the positive orthant of Rn

•Semidefinite programming: K = Pos (Cn), the cone of
positive semidefinte operators.

Weak Duality Theorem:For every cone program, α ≤ β.

Optimizing over separable
measurements

The maximum probability of distinguishing a set of states
{ρ1, · · · , ρN} by separable measurements can be expressed
as the optimal value of a cone program:

Primal problem

maximize: p1 〈ρ1, P1〉 + · · · + pN 〈ρN , PN〉
subject to: P1 + · · · + PN = 1X⊗Y

Pk ∈ Sep (X : Y) ,
for each k = 1, . . . , N.

Dual problem

minimize: Tr(H)
subject to: H − pkρk ∈ Sep∗ (X : Y),

for each k = 1, . . . , N,
H ∈ Herm (X ⊗ Y) .

Block-positive operators

Def. 1 Sep∗ (X : Y) =
{H ∈ Herm (X ⊗ Y) : (x∗ ⊗ y∗)H(x⊗ y) ≥ 0

∀x ∈ X , y ∈ Y}.
Def. 2 Choi representations of positive linear maps
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Cone programming formulation

Analytically
•Many known families of positive linear maps
•Actual quantitative bounds

Computationally
•Optimizing over separable operators is NP-hard
•We can approximate the cone program by a hierarchy
of SDPs based on symmetric extensions

Applications

Unextendable Product Sets
Definition A set of mutually orthogonal product states

s.t. it is impossible to find a nonzero product vector
that is orthogonal to every element of the set.

Our results
•An easily checkable characterization of when an
unextendable product set is perfectly discriminated
by separable measurements.

•The first example of an unextendable product set
that cannot be perfectly discriminated by
separable measurements – in C4 ⊗ C4.

•A proof that every unextendable product set
together with one extra pure state orthogonal to
every member of the unextendable product set is
not perfectly discriminated by separable
measurements.

•Related to a family of linear maps of Terhal.

Bell states
Our Result An optimal bound on the entanglement

cost necessary to distinguish 3 or 4 Bell states.
• Related to a new family of positive linear maps.
• The lower bound is given by a standard
teleportation protocol.

Yu–Duan–Ying states
Definition A set of 4 locally indistinguishable

maximally entangled states in C4 ⊗ C4 [4].
Our Result An optimal bound of 3/4 to distinguish

the states by separable measurements.
• Connected to the positive maps of Breuer and
Hall [5, 6].

Open Problems

•Entanglement cost to distinguish maximally entangled
states in Cn ⊗ Cn

•Are two copies sufficient to discriminate any set of
orthogonal pure states?
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