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on the graphics processing unit
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Graphics processing units (GPUs) offer parallel computing power that usually requires a
cluster of networked computers or a supercomputer to accomplish. While writing kernel
code is fairly straightforward, achieving efficiency and performance requires very careful
optimisation decisions and changes to the original serial algorithm. We introduce a
parallel canonical ensemble Monte Carlo (MC) simulation that runs entirely on the GPU.
In this paper, we describe two MC simulation codes of Lennard-Jones particles in the
canonical ensemble, a single CPU core and a parallel GPU implementations. Using
Compute Unified Device Architecture, the parallel implementation enables the
simulation of systems containing over 200,000 particles in a reasonable amount of
time, which allows researchers to obtain more accurate simulation results. A remapping
algorithm is introduced to balance the load of the device resources and demonstrate by
experimental results that the efficiency of this algorithm is bounded by available GPU
resource. Our parallel implementation achieves an improvement of up to 15 times on a
commodity GPU over our efficient single core implementation for a system consisting of
256k particles, with the speedup increasing with the problem size. Furthermore, we
describe our methods and strategies for optimising our implementation in detail.

Keywords: graphics processing unit; Compute Unified Device Architecture; high-
performance computing; Monte Carlo simulations; canonical thermodynamic
ensemble; Lennard-Jones potential

1. Introduction

The affordability of graphics processing units (GPUs) has made high-performance

computing more accessible and financially practical. Furthermore, the growth rate of the

computing power in the GPU is more than that for the CPU, so the GPU offers significant

speedup in execution for certain applications. Although both software and hardware

developments for GPUs have enabled more high-performance computing applications than

ever before, writing optimised algorithms and code to utilise these devices remains time-

consuming and intensive. In this paper, we describe the development of an efficient GPU

implementation for the Monte Carlo (MC) simulation of molecular systems. The

programming abstraction utilised in this paper is the Compute Unified Device Architecture

(CUDAe) application programming interface [30]. This architecture supports the parallel

programming model and the instruction set that allows substantial speedup over general

purpose CPUs for data parallel applications. Moreover, CUDA allows the developer to use

their familiarity with languages such as C, Cþþ or Fortran within the framework of the

programming environment. This reduces the learning curve for developers and promotes
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rapid application development. The result is thatmore applications are being re-implemented

for execution on the GPU every day and computer simulation is one such key application.

Potential functions have long been used in physical simulations to describe the

collective or local behaviour of molecules in condensed systems. The chief limitation to

simulation of physical systems using potential functions is computational cost, a limitation

that can be overcome with high-performance parallel computing. To study atomistic

systems, computer simulations are considered valuable substitutes to laboratory

experiments to get information on the liquid or gas states of chemical compounds and

mixtures [11]. Two approaches have been of particular interest to a number of researchers,

MC and molecular dynamics (MD) simulations [6,14]. Markov chain MC simulations

allow the study of open systems, which are infeasible for a traditional MD code.

An example of a system well suited for MC simulation is the adsorption of gases in porous

materials, such as activated carbons. MC simulations can accomplish the simulation of the

open porous system via trial moves that allow the number of particles to fluctuate.

Additional examples of MC simulation include the following:

. Prediction of physical properties and phase behaviour. This application is primarily

of interest to chemical process industries. For example, given a mixture of

compounds, the goal is to predict accurately the coexistence properties of the gas

and liquid phases.

. Prediction of adsorption isotherms for gases in porous materials. Typical

applications for this are CO2 sequestration from flue gas, and hydrogen or methane

storage. With a fast enough code, one could potentially carry out high-throughput

screening of candidate materials [13].

. Simulation of biological systems at constant chemical potential. Simulations of the

fundamental biomechanical process of membrane fusion have shown divalent

cations and water molecules to play a critical thermodynamic role [17]. In order to

use simulations to understand this fundamental process that occurs in all living

organisms, it is critical to maintain constant ion and water molecule chemical

potential to achieve realistic local densities.

. The use of nanoparticles to stabilise drug dispersions. Simulations of nanoparticle

dispersions also typically require a constant chemical potential, so that as the

microparticles approach each other, the number of nanoparticles varies to maintain

chemical equilibria with the bulk. This is a very important application for this work

because large system sizes are required to simulate interacting microparticles.

MC simulations are driven by statistical physics based on energetics, thus it is necessary to

pick a potential model to accurately model the studied compound. Perhaps, the most

common potential model used to describe interactions between particles is the Lennard-

Jones potentials. While this model is mathematically straightforward, simulating even

relatively modest systems requires a substantial amount of computing power. This is due

to the millions of iterations required for the MC simulation to converge to a solution.

An optimised sequential version of the canonical MC algorithm was written in

C/Cþþ , which significantly outperforms the open source Fortran-based MC software

package MCCCS Towhee [25]. It should be noted that attempting to modify code bases

such as Towhee to include GPU-enhanced functionality would require a large dedicated

effort with significant time investment. In addition, rewriting the algorithm usually

requires substantial modifications to the core design of the serial algorithm. A similar

effort of redesigning a large-scale system is the highly optimised object-oriented many

particle dynamics (HOOMD) engine. It was created by Ames Lab [3] in collaboration with

E. Hailat et al.380
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Iowa State University and, later, adopted by the University of Michigan (HOOMD-blue)

to perform MD simulations utilising GPUs. HOOMD-blue utilises CUDA at its core and,

additionally, showcases many of the innovations expected of a modern reworking for a

simulation engine – executing a simulation with performance equivalent to that of using a

30 processor core cluster [3].

Until now, no available GPU-based MC engine has been developed for standard

thermodynamic ensemble simulations of Lennard-Jones particles to this scale. However,

GPU-driven MC simulations of chemical systems have been performed, using lattice

gauge theory [10], Ising models [32] and simulations of hard spheres [15]. Calculations

of the Lennard-Jones potential are significantly more computationally expensive than

the Ising or hard sphere models, because the interactions between all particles within a

certain cut-off radius, rcut, must be calculated. Recently, a work was published using

lookup tables for the canonical ensemble simulation, which focuses on a small-size

system (N ¼ 128) [19] using the embarrassingly/pleasingly parallel algorithm [1] of

multiple identical lightweight single-thread simulations. The authors suggest that this

approach may be limited for larger atomistic systems. In this work, we present an

alternative off-lattice GPU-enabled algorithm for the chemical simulation of Lennard-

Jones particles, based on the heavily multithreaded principle of energetic

decomposition, also known as the ‘farm algorithm’ which early CPU-based parallel

computing studies [41] suggested, but did produce insufficient performance. However,

the GPU architecture requires a re-examination of the older algorithm that is deemed

inefficient on CPUs.

Due to the limited number of parallel operations in a multicore implementation of this

algorithm, it is not expected to produce more speedup than a manycore system would

produce. Hence, the effort is directed towards manycore technology that provides more

parallelism for this algorithm. We present a novel optimised GPU-based MC simulation

for the canonical ensemble using the CUDA framework. Our system opens the door for

simulations of systems with hundreds of thousands of particles and hundreds of millions of

simulation steps on a commodity desktop computer loaded with a commodity GPU.

In addition, each thread in our model is mapped to one or more unique particle pairs for

calculating virial (used to calculate pressure) and energy. Finally, our study shows that a

faster CPU does not have a significant impact on the performance of the parallel algorithm

while a faster GPU makes a noticeable performance difference for the same platform.

To illustrate, running the simulation on a relatively slow CPU gave a speedup of 20.3 times

on a Core 2 Duo CPU, compared with 12.33 times speedup on an average Core i5 CPU

using the same GeForce GTX 480 card. The parallel execution time was almost the same

on both platforms; the difference in speedup is due almost entirely to the relative running

time of the sequential algorithm on each platform. In other words, the 20 times speedup

did not come from a faster GPU run, rather, it is a result of running a slower CPU; the

running time of the parallel code should be the same in both cases.

The structure of this document is as follows. Related work and different applications of

the GPU are introduced in Section 2. Section 3 provides a brief overview of MC

simulations and methods used to utilise this simulation. Relevant features of the CUDA

framework are presented in Section 4. Discussion of the key factors that affect the design

of the parallel algorithm, in addition to illustration of the proposed algorithm, can be found

in Section 5. Section 6 discusses the performance impact of these key design factors. In

addition, a detailed performance comparison between the parallel and serial algorithms is

presented. Finally, Section 7 elaborates on future extensions to this work in regard to

simulating other systems in parallel using the CUDA framework.

International Journal of Parallel, Emergent and Distributed Systems 381
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2. Related work

Recently, a wide variety of applications have reported substantial performance gains from

the use of GPUs. Many scientific algorithms of a parallel nature, or needing a great deal of

mathematical computation, have been ported to the GPU.

Algorithms for applications in almost all fields have started utilising the power of this

inexpensive technology. For example, data clustering [21], protein folding [39],

macromolecular simulation [38], stock pricing [22], speech recognition [18], sorting and

searching [4], standard query language (SQL) queries [5], kernel machines [35], magnetic

resonance imaging (MRI) reconstruction [37] and Euclidean distance map [24].

MD codes exist, some of which have been modified to utilise the GPU, including large-

scale atomic/molecular massively parallel simulator (LAMMPS) [9], nanoscale molecular

dynamics (NAMD) [31], assisted model building with energy refinement (AMBER) [34]

and HOOMD-blue [3], which was developed from scratch to support the GPU. Existing

GPU-enabled MD codes are inadequate for many biomolecular systems of interest, which

requires the simulation of an open system. The MC method is the ideal technique for this

class of biomolecular systems. However, to the best of our knowledge, there is only one

open-source MC code (Towhee) [25], and there are no open-source MC codes that utilise

GPUs in any form. As a result, only small problem sizes can be run in a reasonable amount

of time and this constrains the size of MC simulations. While systems containing more

than 100,000 atoms are routinely simulated with MD, MC simulations are typically

limited to systems containing less than 2000 atoms. Another recent work on MC

simulation on the GPU for systems of hard disks can be found in [2]. In this method, a

spatial decomposition technique is used, in which multiple particles of short range

interaction are moved at the same time in a ‘sweep’ with the space divided so that detailed

balance is not violated. Maintaining a detailed balance in this algorithm adds extra

overhead to the original algorithm and to the process of verifying results. In addition,

while this algorithm has been conducted only for 2D systems, scaling from 2D

checkerboarding to 3D checkerboarding is a very difficult task.

3. Markov chain MC simulations

AMarkov chain method has the property that stepN þ 1 depends on the results collected in

step N. MC simulations use random sampling to solve computational problems. We are

interested in the MC simulation of chemical systems that use the MC method to evolve

system configurations via probabilistic acceptance rules derived from statistical mechanics.

The methods that allow MC simulation for atomistic systems are described as follows.

3.1 Metropolis method and thermodynamic ensembles

While there are many approaches to applying MC methods to molecular systems, the most

popular one is called the Metropolis method [27]. In general, the Metropolis MC method

[33] is a computational approach to generate a set of C configurations of the system.

An ensemble (also statistical ensemble or thermodynamic ensemble) is an idealisation

consisting of a large number of mental copies (sometimes infinitely many) of a system,

considered all at once, each of which represents a possible state that the real system might

be in [14]. Figure 1 shows one of the most common ensembles used in the literature that is

the canonical ensemble in which the number of particles (N), volume (V) and temperature

(T) are fixed. However, the system energy (E) and pressure (P) are variables. Sometimes,

this system is referred to as the NVT ensemble. Using MC trials of different configurations,
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as per the Boltzmann’s ergodic hypothesis [7], this method can give accurate physical

information for many systems over a sufficient number of trials.

The acceptance criteria in this case is typically given by first calculating the Boltzmann

factor

eð2bDEÞ; ð1Þ

where DE is the change in energy from the previous state to the tested state, b ¼ ð1=kBTÞ,
kB the Boltzmann constant and T the temperature of the system. The result of this equation

is typically compared with a random number in the range ½0; 1Þ. If the random number is

higher than the Boltzmann factor, the move is accepted. This approach is known as the

Boltzmann probability distribution [14].

3.2 Lennard-Jones potential

The Lennard-Jones potential is a frequently used short-range interaction model to simulate

interactions between a pair of particles [12]. The potential equation is given by:

ULJ ¼ 4e
s

r

� �12

2
s

r

� �6
� �

; ð2Þ

where e is the depth of the potential well, s the collision diameter for interacting particles

and r the distance between interacting particles. As can be observed, the mathematical

succinctness of this formula encourages its predominant use in the literature. From an

implementation perspective, however, the simulation tends to be computationally

intensive even for small systems. Specifically, the computation of interaction forces

among molecules in a Lennard-Jones simulation is given by the equation:

FLJ ¼ 24e 2
s12

r 13

� �
2

s6

r 7

� �� �
: ð3Þ

This portion of the simulation is responsible for nearly all of the execution time [23].

The complexity of computing particle interactions is typically reduced by maintaining the

total system energy and computing only the change in energy of the system when a particle

Figure 1. A particle displacement attempt in Metropolis MC method.
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is displaced. Therefore, each displacement attempt takes OðNÞ time, where N is the

number of particles in the system.

The reader is referred to [14] for the proof of the validity of this method and further

chemical details.

4. Parallel model

4.1 CUDA architecture

We use the Fermi GPU architecture from NVIDIAw [20,29,30,40] for our experiments.

Early GPU architectures had none or limited double-precision floating-point capabilities,

which restricted the use of GPUs for scientific applications. GPUs built on Fermi have

advanced double-precision capabilities that enhance the performance of programs that

require the use of double-precision operations. Moreover, Fermi GPUs introduced faster

atomic operations, which enhanced many operations such as sorting and reduction. It also

provides faster context switching, support for concurrent kernel execution, improved

thread block scheduling, improved branch prediction, the addition of an L2 cache, and

more registers and shared memory [23,40].

CUDA program development incorporates the use of threads that run a specified

function called a kernel. Threads are organised into blocks, and each grid has multiple

blocks of threads. Threads are organised into groups of 32 parallel threads called warps.

A warp executes one common instruction at a time. Threads inside a block can

communicate using the on-chip shared memory. Threads from different thread blocks can

communicate using global memory, which is slower than the on-chip shared memory.

Figure 2 illustrates the GPU architecture and how the GPU hardware is related to the

CUDA threads. In this work, we are using CUDA release 4.0. Significant updates from

prior CUDA versions include debugging tools, profiling tools, unified virtual addressing

and N-copy pinning of system memory [29].

Figure 2. NVIDIA’s Fermi architecture abstraction.
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4.2 Structure of the code

In order to gain a better understanding of the code implementation, a high-level view of the

serial algorithm is presented, see Algorithm 1. In this algorithm, an initial system energy is

calculated, then a randomly chosen particle is moved to a random location. Finally, the

acceptance rule is calculated as a function of the change in energy for that specific particle.

The CUDA architecture has some limitations that affect the system performance.

For example, as the kernel cannot write results directly to an output device, all results have

to be copied back to the CPU for further processing and for output to files. As the GPU and

CPU do not share a common memory space, memory transfers are required to update the

system status on the GPU if the CPU has changed some shared variables and vice versa.

Developing a parallel GPU algorithm is largely domain driven. Our parallel algorithm

has the same structure as the serial algorithm due to the serial nature of the MC algorithm.

However, specific functions have been ported to the GPU. The flowchart in Figure 3

illustrates the main operations of the parallel implementation:

(1) Generate a sequence of random numbers and move them asynchronously to the

GPU along with system configuration parameters such as particle positions,

current energy, current virial and the number of particles in the system.

Algorithm 1. Serial canonical ensemble Monte Carlo algorithm

input: Number of particles and Volume
input: Temperature
input: e , s, rcut
// Calculate initial energy of the system
for i ¼ 1 to N–2 do
for j ¼ i þ 1 to N do
total_energy þ ¼ calculate_pairwise_energy(i, j)

end for
end for
// Main Loop
for i ¼ 1 to step_number do
// Randomly select a particle to move
s ¼ selected_particle ˆ rand()
Old_particle_loc ˆ particle_location(s)
// Randomly move to a new location
New_particle_loc ˆ rand()
// Calculate the selected particle’s energy for the old and new locations
for k ¼ 1 to particles, k! ¼ s do
old_energy_contrib þ ¼ calculate_pairwise_energy(Old_particle_loc, k)
new_energy_contrib þ ¼ calculate_pairwise_energy(New_particle_loc, k)

end for
deltaE ¼ new_energy_contrib–old_energy_contrib.
calculate_acceptance_rule()
if accepted then
total_energy þ ¼ deltaE
current_config ˆ new_config
update_system_status()

else
// Leave current system state

end if
// Update the rate of accepted moves
// Solve if the system in equilibrium
// Periodically write system status to disk

end for
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(2) Repeatedly perform trial move attempts within the main loop. For each trial, pick a

random particle to move and calculate the difference in energy (DE) for the

selected particle in the old and new locations. This includes the following:

(a) Assign threads to particles

(b) Calculate partial energy sums from all threads

(c) Calculate partial energy sums from all blocks

(d) Calculate DE
(e) Calculate the Boltzmann factor

(3) Compare a random number with the resulting probability of acceptance calculated

from the previous step.

(4) If the move is accepted, apply the changes to the system and adjust status.

(5) Periodically, output system status and particle positions to a data file.

(6) If there are more steps to execute, go to step (2).

Figure 3 shows the hybrid CPU–GPU system and illustrates data movement between

the host and the device using double line arrows. Moreover, the data flow has been labelled

to illustrate the specific data being transferred for that particular step. Eventually, the host

has the main loop that the simulation executes, in addition to the I/O necessary to output

system status to disk. The kernel function TryMove() is responsible for handling the

particle displacement attempt. The system energy and pressure are stored from the

previous state and will be used to calculate the acceptance criteria for each displacement

attempt. Moving this function to the device led to significantly better overall system

performance, because the pairwise interactions can be calculated in parallel.

Move
Accepted

?

Attempt Displacement
(TryMove)

Calculate Particle Contribuon
for Old Position (OCPC)

Start Main
Function

Terminate Program

 

Initialize System atoms,
place them on lattice (Init)

Calculate the Initial Total
System Energy (CTE)

Calculate the Final Total
System Energy (CTE)

Update System
with new atom
position/Energy

Run more
Steps?

Yes

Yes

No

No

Host
Memory

Device
Memory

New Coordinates Async

Virial and Energy

-System Configs
-Random Numbers

Generate Random
Numbers

Output status to
disk

-Coordinates

-System Status

Each 10k steps

-System Status

Calculate Particle Contribuon
for New Position (NCPC)

Figure 3. MC simulation for the canonical ensemble method flowchart. Filled shapes represent
operations executed on the GPU.
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The CalculateTotalEnergy() function is another important function in this simulation.

This function calculates the current system energy resulting from each interacting pair of

particles, which requires OðN 2Þ computations. Many optimisations have been applied to this

function. The main focus was to balance the workload across the threads and hide the global

memory latency. This function is executed only twice, at the beginning of the simulation to

find the initial system energy and at the end of simulation for verification purposes.

As Figure 3 shows, almost all functions have been moved to the device. Besides some

initialisation of variables and allocation of storage, those functions are as follows:

. InitialiseAtoms(), which is called once at the beginning to initialise atom positions

on the grid.

. CalculateTotalEnergy() to calculate the system’s initial energy at the beginning of

the simulation and final energy at the end of the simulation.

. TryMove(), which is executed at each simulation step to attempt a displacement move.

. CalculateParticleContribution() for the energy of the selected particle in the old and

the new locations in each simulation step.

On the other hand, the only two functions that do not execute on the device are the function

that dumps the current system status to disk,WriteSystemStatusToDisk(), and the function

that generates the random number sequence, MTRandomSequence().

5. Optimising the MC algorithm for the GPU

In this section, we shall consider specific strategies implemented to optimise the MC code

suite. This list mentions a number of significant optimisations that have boosted the

performance of the MC simulation. As a parallel algorithm cannot be generalised to all

problem domains, we have focused on the optimisations that enhanced the overall

performance of this particular class of problems.

5.1 The block size effect

The number of threads per block is limited by resources that the device can allocate to each

block. For devices of compute capability 1·x, the maximum number of threads per block is

512 threads, and 1024 threads per block for devices of compute capability 2·x. One may

think to load the GPU with the minimum number of threads per block so that less threads

share resources per block to increase the performance. However, this is not the case. The

main drawback to using smaller block sizes is the reduced sharing of data among threads.

Threads in one block can share data through fast shared memory, blocks on the other

hand can share data only through device global memory, which is much slower than shared

memory. Another drawback for small block sizes is the need for synchronisation

mechanisms. While threads in the same block can synchronise execution through

lightweight CUDA statements such as __syncthreads(), threads in different blocks

need other techniques to accomplish synchronisation such as the technique mentioned in

Section 5.7. Some modest performance gain may be possible by tuning the block size

separately for each function. As the vast majority of the running time (not counting

memory transfers) is used to execute the TryMove kernel, we did not evaluate this idea. In

this study, several block sizes are examined and we have reported the performance

measurements. The same block size is used for all the GPU functions.
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5.2 The use of pinned memory

Pinned memory enables asynchronous memory copies (allowing for overlap with both

CPU and GPU execution) as well as improving PCIe throughput. An example of using

pinned memory in the MC simulation is the storage of generated pseudo-random numbers.

Random numbers are needed for each step of the algorithm; we used the Mersenne Twister

[26] random number generator on the CPU to produce a sequence of random numbers that

are copied periodically and asynchronously from the CPU to the GPU. In addition, the

system takes advantage of high-throughput pinned memory when periodically transferring

particle coordinates modified by the GPU to the CPU for checkpointing. As the random

numbers and the coordinates of the particles are the only large memory structures that are

transferred between the CPU and the GPU, only these two structures use pinned memory.

5.3 The use of different GPU memory types

Shared memory can be accessed by any thread in that particular block. Other blocks, on

the other hand, have no access to this memory. Table 1 shows the GPU structures that can

access shared memory. One of the strengths of the GPU is the existence of shared memory

and cache. However, the amount of this high-throughput memory is limited to a maximum

of 48k per streaming multiprocessor (SM). Table 3 lists the different memory

specifications for the cards used in this study.

Our implementation uses shared memory to aggregate partial sums among blocks and

keeps track of common variables that will be used by all threads in a block, which is used

for the CalculateTotalEnergy (CTE) and TryMove functions. However, Section 5.8 shows

an unavoidable use of global memory to synchronise blocks in a grid. Another type of

memory that can enhance the overall system performance is constant memory. Our

application uses constant memory to store fixed system parameters that are used

throughout the simulation to avoid expensive global memory CPU–GPU communication.

5.4 Memory coalescing for fetching particle positions

Combined memory accesses can have a dramatic effect on the throughput of the program.

For instance, if the threads are not accessing adjacent memory locations within a

transaction, bandwidth is needlessly wasted. On the other hand, fewer memory

transactions are required when accessing contiguous memory locations, which increases

the overall performance of the system. Whenever possible, our implementation uses a

sequence of threads to access neighbouring locations in global memory in order to achieve

memory coalescing. Moreover, when calculating the total energy and the total virial

contribution to the pressure of the system, each block of threads will typically be

Table 1. Thread hierarchy and properties.

Associated resources

Coarse Size Memory scope Processing

Thread – Registers, local memory 1 core
Warp 32 threads Registers, local memory 1 SM
Block 512/1024 threads for 1·x & 2·x compute cap. Shared memory, L1, L2

cache
1 SM

Grid 65,536 per dim 64
on z-dim

Global, constant, texture Device scope
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responsible for finding more than one pairwise particle sum, where particles are stored in

global memory. The access pattern to global memory in this case maps consecutive thread

ids to consecutive global memory locations.

5.5 Loop unrolling technique in finding total energy

In the context of our program, loop unrolling has been applied to perform all of the

summation steps within a single warp in parallel.1 This technique is similar to, but more

general than, that mentioned in [16], in which slightly more optimisations have been made.

For example, our implementation handles cases where there is not an exact multiple of two

elements to calculate, there are more threads than particles in the system or there are more

blocks than threads. Even so, we use fewer global memory transactions than [16], and rely

more on caching, which was not available for their implementation. Algorithm 2 shows the

summation process for one block. Each thread is responsible for finding a partial sum. To

accomplish this, only ðN=2Þ threads are needed. The constant tid represents the thread id in
the block on the x axis that is assigned at execution time.

Note that in the switch-case statements, all subsequent cases are executed until a

break statement is encountered. For example, when the offset value is 8, then the case for

8, 4 and 2 will be executed. This technique is illustrated in Figure 4. For blocks with

enough threads, applying this method to the kernel code enhances performance

significantly.

5.6 Load balancing among threads and contributing particles

Only unique particle pairs should be considered in the total energy calculation,

which means that, for N particles, NðN 2 1Þ=2 unique pairs must be evaluated for

Algorithm 2. Partial sum showing loop unrolling

1: // offset equals largest power of two less than the block size
2: // Check if we have more blocks than threads
3: // Start summing the values in cache memory
4: i ˆ offset
5: while i . 32 do
6: if tid , i then
7: cachedEnergy[tid] ˆ cachedEnergy[tid þ i ] þ cachedEnergy[tid]
8: end if
9: _syncthreads()
10: i ˆ i/2
11: end while
12: // Find the sum of the first 64 values
13: if tid , 32 then
14: offset ˆ min(off_set, 64)
15: switch (off_set) do
16: case 64: cachedEnergy[tid] ˆ cachedEnergy[tid þ 32] þ cachedEnergy[tid]
17: case 32: cachedEnergy[tid] ˆ cachedEnergy[tid þ 16] þ cachedEnergy[tid]
18: case 16: cachedEnergy[tid] ˆ cachedEnergy[tid þ 8] þ cachedEnergy[tid]
19: case 8: cachedEnergy[tid] ˆ cachedEnergy[tid þ 4] þ cachedEnergy[tid]
20: case 4: cachedEnergy[tid] ˆ cachedEnergy[tid þ 2] þ cachedEnergy[tid]
21: case 2: cachedEnergy[tid] ˆ cachedEnergy[tid þ 1] þ cachedEnergy[tid]
22: end switch
23: end if
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potential interaction. An N £ N square matrix can be used to illustrate the pair

interactions as seen in Figure 5. The unique pair interactions are in the upper

triangular or lower triangular matrix; here the upper triangular matrix is chosen. To

create a contiguous block of unique interactions, the lower right unique interactions

of the square can be mapped into the upper left quadrant so that the unique

interactions will be contiguous rows. This mapping produces N=2 rows of

contiguous unique pair interactions. At this point, it is easy to balance the load

among threads. For instance, one thread could be assigned to only one row, or one

row could be divided among more than one thread.

As N grows, one row could be divided among multiple threads. Finer grained threads

can access locations in one row using a block cyclic distribution to take advantage of

contiguous data locations. For example, if four threads are assigned to each row, each

thread will process locations using an offset of 4. With this technique, threads will access

adjacent locations on each pass, which reduces the memory latency. Figure 5 provides

further illustration of the mapping algorithm.

5.7 Atomic operations on global memory transactions

This operation is useful to avoid a race condition for cases where multiple threads are

competing to modify a particular memory location. For instance, atomic operations make

it possible to synchronise blocks in a grid, as blocks can share only global memory. This is

discussed further in Section 5.8. On the other hand, atomic operations can lower

performance as they serialise accesses to global memory, add extra instruction processing

and require busy waiting. However, Fermi cards offer a more efficient implementation of

atomic operations.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

Figure 4. Calculating the partial sum for values in shared memory that use adjacent memory
locations. Each circle represents work done by a thread.
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5.8 Block synchronisation through global memory and atomic operations

The current structure of the CUDA architecture does not support explicit synchronisation

between blocks of a grid. So, we adopted a technique that uses atomic operations on global

memory to achieve this goal, which is presented in [30]. This method defines a boolean

variable that is set to true when the last block finishes. After this, the threads in this last

block will handle the last piece of work to be performed in the kernel call. Specifically, the

threads of the last block finish the work by collecting partial sums found in thread zero of

each block. These steps are illustrated in Algorithm 3. This tree-based method is the most

efficient parallel technique for finding the sum of a large array and uses many features that

are inherent to the GPU.

5.9 Numerical optimisations: tricks and tweaks

Several mathematical operations have been optimised to improve the overall performance

of the program execution. For example, mathematical functions such as __fdvidef,
__log2f and __expf are natively supported by the GPU hardware and execute in

fewer clock cycles. This offers a significant performance advantage for a system with

extensive mathematical operations. Other examples include the use of shift left and shift

right for multiplying or dividing by 2, respectively. Since MC simulation does a significant

number of repetitive mathematical operations, these optimisations gave the most

performance improvement among all the optimisations tested.

Another optimisation technique is to use more efficient mathematical operations on the

GPU. For example, a double-precision division operation such as ½A , ðB=2:0Þ� is

Figure 5. Mapping algorithm for work load balancing across threads.
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replaced with an addition operation such as ½ðAþ AÞ , B�, substituting the cost of a

division operation with an addition. A second example of mathematical optimisation is

when calculating the Boltzmann factor in Equation (1). As the denominator is a constant,

we instead compute the reciprocal once and replace a division with a multiplication.

6. Results and discussion

While we are using the CUDA architecture as an extension to the C language to implement

the parallel algorithm, other MC simulation codes are written in Fortran. Therefore, we

started by re-implementing the serial algorithm in C/Cþþ . The serial code is statistically

equivalent and in agreement with publicly available canonical ensemble simulation results

from the National Institute of Standards and Technology [36]. A parallel algorithm was

then developed starting from our serial code. Results from the CUDA and single-core CPU

implementations match exactly when the same random seed is used.

The comparison between the serial code presented in this work and the Towhee [25]

serial code using the same configurations, shown in Table 2, depicts a huge performance

improvement of up to 438.3 times faster than the Towhee implementation for a relatively

small system size. Note that Towhee’s slower runtime prevented running experiments for

larger system sizes. However, as the serial and parallel codes developed for this study ran

in a reasonable amount of time, results for system sizes larger than the ones found in

Table 2 are reported.

The proposed parallel algorithm would not make a fair comparison against Towhee for

two reasons. First, Towhee has additional functionality, which includes electrostatic

interactions via Ewald summation, configurational-bias methods and multiple ensembles

Algorithm 3. Block synchronisation technique

1: // Thread 0 of each block has the sum of all values for that block
2: if tid ¼ 0 then
3: GlobalEnergy[blockId] ˆ cachedEnergy[0]
4: LastBlock ˆ atomicInc (&BlocksDone, gridDim.x) ¼ gridDim.x 2 1
5: end if
6: _syncthreads()
7:
8: // The last block sums the results of all blocks via global memory.
9: if LastBlock then
10: // Move all block values from global memory to shared memory.
11: if tid , BlocksPerGrid then
12: cacheEnergy[tid] ˆ GlobalEnergy[tid]
13: end if
14: // If you have more blocks than threads, reduce the extra values.
15: i ˆ ThreadsPerBlock
16: while i , gridDim do
17: if tid þ i , BlocksPerGrid then
18: cachedEnergy[tid] ˆ GlobalEnergy[tid þ i] þ cachedEnergy[tid]
19: end if
20: i ˆ i þ ThreadsPerBlock
21: end while
22: _ _syncthreads()
23: // The threads in the last block have gathered the results of all the blocks.
24: // Use Algorithm 2 to combine the values from all threads to get the total.
25: end if
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(isobaric–isothermal, grand canonical and Gibbs ensemble). These are features that are

not yet supported by our code and require additional computational overhead. Second,

there is no easy way to ensure that Towhee and our parallel code contain the same set of

program optimisations. So, it would be difficult to distinguish the speedup due to

parallelism from the speedup due to the use of more efficient algorithms.

The recorded elapsed time includes the time to read from the input file, allocate

memory, transfer data to the device, and run the massively threaded algorithm for each

particle displacement attempt, but not the time to calculate the final system state, which is

a validation step and not part of the simulation. Most test runs are for 2n particles, and

corresponding volumes of 2nþ1 where 8 # n # 18. The average speedup is for the CPU

and GPU running a million simulation steps,2 where each step is a move attempt. For all

runs, we used (-O3) and (-m64) flags passed to the gcc compiler. Furthermore,

performance is measured in terms of the speedup, which is the ratio between the serial and

parallel end-to-end application execution times. However, for statistical validation, all

experiments have been run five times and the average of these runs is used. All of the five

tests run times show very close agreement. Precisely, the difference between this average

of five runs and any single run was always less than 3%. In fact, out of 16 hundred runs,

only 9 deviated from the average for that configuration by more than 1%.

Three different graphics cards have been used to run the experiments. The

specifications of all three cards can be found in Table 3. Although the GeForce GTX 480 is

an older model than the GeForce GTX 560, the former has more global memory and

higher memory bandwidth, which enhances the performance of this application domain.

Moreover, there are twice as many multiprocessors in the GeForce GTX 480, which

allows for scheduling double the number of blocks at the same time compared with the

other two cards. Although we have access to a high-end NVIDIAw Teslaw card, we could

not report results obtained with this card due to the lack of a high-end CPU such as the

Table 2. Average program execution times (in seconds) and speedup over Towhee.

N Serial Towhee Speedup

256 6.31 270.2 42.8
461 10.1 908.0 89.9
512 11.58 1118.2 96.56
1024 21.07 2897.2 137.5
2048 40.29 9642.8 239.3
4096 73.34 32,150.3 438.3

Table 3. Specifications for the three graphic cards used to run reported experiments.

GeForce GeForce GeForce
GTX 460 GTX 560 GTX 480

Number of cores 336 336 480
Multiprocessors 7 7 15
Max shared mem. per block (kB) 48 48 48
Global mem. (GDDR 5) (GB) 1 1 1536
Processor clock (MHz) 1300 1700 1401
Max. block size 1024 1024 1024
Mem. bandwidth (GB/s) 108.8 128 177.4
Compute capability 2.1 2.1 2.0
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Intelw Xeonw processor. The results achieved in this work were obtained with the

commodity desktop processors described in Table 4.

Table 5 shows different block sizes and their effect on the overall simulation speedup

compared with the single-core serial code. Performance-wise, the following can be noted:

(1) When the number of threads per block is small, the need for more global memory

accesses for synchronisation rises. This is most pronounced when there are only

32 threads per block. The worst performance for this case was when the system

size is 131,072 particles and has 4096 blocks.

(2) Sixty-four threads per block offers the best performance when there are less than

8192 particles in the system. With this block size, load balancing of shared and

global memory usage is achieved for the reduction operation. In addition, exactly

two warps are scheduled for each block. This is consistent with prior research on

optimal block size given in [30]. However, end-to-end execution time is the worst

when the system size is larger than 8192 particles, as seen in Table 5. This is

evidence that the GPU’s performance depends on the problem size and

specifications and not on a general rule.

(3) Systems consisting of at least 8192 particles, but less than 32,768 particles achieve

the best performance with 128 or 192 threads per block. Resource sharing is

critical for large systems, and less resources are allocated when larger blocks are

used.

(4) A further performance improvement is observed in systems larger than 65,536

particles when assigning 128 threads per block. The performance improvement is

nearly the same as with 192 threads running in a block, which is a multiple of 64,

too. This is due to the fair share of resources and the balance in using shared versus

global memory.

These results show that selecting the optimal block size is not trivial. For example, in

our case, 128 particles per block is the recommended block size for very large systems, but

does not perform best for smaller systems.

Looking at Table 5, also plotted in Figure 6, a detailed comparison between different

GPUs running on different platforms is observed. We obtain significant performance

improvement for some GPUs over others running the same code on the same platform. For

instance, the GeForce GTX 480 obtains up to 12.33 times speedup compared with a

maximum of 7.35 times speedup for the GTX 560 running on the same desktop. This is

because of the extra core count and memory capacity of the GTX 480 over the GTX 560.

Also, from Figure 6, we notice the same pattern of speedup for all runs on all systems.

Speedup is increasing gradually with the system size and shows the best performance for

the largest systems.

Figure 7 plots the execution times in seconds for the serial code against Towhee on an

Intelw Coree i5, and Figure 8 compares the execution time of the serial algorithm with the

Table 4. Desktop computers used for the experiments.

GPU CPU RAM (GB) OS

GTX 480 Intel Core i5-2500K 8 CentOS 6.2
GTX 560 Intel Core i5-2500K 8 CentOS 6.2
GTX 460 AMD Phenom II 6 Ubuntu 11.04
GTX 480 Intel Core 2 Duo 2 CentOS 6.2
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parallel algorithm running on the GeForcew GTX 480 GPU. As the system size increases,

the execution time for both algorithms increases. However, the execution time of the serial

algorithm grows much faster than the parallel version. Note that the break-even point

where the GPU code starts to overcome the added overhead and shows better performance

than the serial code is when the system has more than 512 particles, as shown in Table 6.

Memory transfers and parallel function invocation are the main causes of this overhead.

The speedup ratio seen in Figure 6 shows rapid improvement as the system size grows and

we expect more speedup for larger systems.

The parallel algorithm has been tested with the same GPU on different machines.

Figure 9 shows that the speed of the CPU (host) has a negligible impact on the execution

Table 5. Large versus small block size and system performance.

Number of particles

256 512 1024 2048 4096 8192 16,384 32,768 65,536 131,072

GTX 560 þ i5 block size
32 0.65 1.16 2.09 2.79 3.60 4.05 4.24 4.12 3.97 3.98
64 0.59 1.07 1.99 3.20 4.01 4.94 5.71 6.01 6.14 6.34
128 0.65 1.17 2.07 3.50 4.86 5.64 6.59 7.02 7.12 7.35
192 0.64 1.16 2.13 3.47 4.24 5.23 6.25 6.68 6.79 6.95
256 0.59 1.07 1.99 3.20 4.01 4.94 5.71 6.01 6.14 6.34
320 0.58 1.03 1.88 3.59 4.91 5.39 6.11 6.63 6.80 7.12
448 0.58 0.88 1.68 3.19 3.43 4.30 4.66 4.96 5.04 5.14
512 0.58 0.82 1.57 2.99 3.38 4.19 5.00 4.96 5.03 5.22

GTX 480 þ i5 block size
32 0.60 1.08 1.98 3.58 4.34 5.40 6.44 6.90 6.46 6.64
64 0.61 1.09 2.02 3.64 5.52 6.29 8.30 9.78 10.24 10.93
128 0.59 1.07 2.00 3.47 5.34 7.48 8.94 10.07 11.40 12.33
192 0.73 1.25 1.96 3.54 4.58 5.53 7.45 8.74 9.47 10.00
256 0.68 1.16 2.07 3.21 4.67 5.64 7.21 8.26 8.89 9.31
320 0.68 1.12 1.98 3.26 5.03 5.38 6.73 7.87 8.56 9.16
448 0.68 0.98 1.79 3.27 3.47 4.29 5.13 5.86 6.30 6.58
512 0.68 0.92 1.67 3.06 3.40 4.16 5.55 5.86 6.29 6.70

GTX 480 þ C2D block size
32 1.21 2.02 3.55 6.12 7.10 8.62 10.02 10.72 10.21 10.95
64 1.23 2.05 3.64 6.23 9.25 10.13 13.12 15.23 16.24 18.00
128 1.22 2.02 3.59 5.93 8.95 12.21 14.22 15.91 18.09 20.30
192 1.15 1.95 3.49 6.18 8.93 12.72 14.73 16.21 17.29 19.35
256 1.07 1.80 3.22 5.73 8.29 9.63 12.49 14.31 15.69 17.29
320 1.06 1.69 3.03 5.53 9.17 12.27 13.78 15.07 17.03 18.83
448 1.06 1.46 2.69 4.88 8.18 8.76 11.81 14.25 14.57 15.75
512 1.06 1.37 2.49 4.52 7.71 8.39 11.16 13.33 14.53 15.64

GTX 460 þ Ph II block size
32 0.74 1.26 2.17 2.79 3.56 3.94 4.50 4.75 4.91 5.06
64 0.75 1.26 2.17 3.70 4.37 5.28 6.75 7.46 7.91 8.29
128 0.59 1.07 2.00 3.47 5.34 7.48 8.94 10.07 11.40 12.33
192 0.56 1.04 1.95 3.62 5.34 7.77 9.25 10.39 10.93 11.79
256 0.53 0.96 1.79 3.37 4.99 6.00 7.89 9.10 9.87 10.50
320 0.52 0.90 1.69 3.25 5.49 7.55 8.72 9.56 10.72 11.36
448 0.52 0.77 1.50 2.86 4.88 5.46 7.46 9.09 9.21 9.63
512 0.52 0.73 1.40 2.67 4.61 5.22 7.06 8.46 9.19 9.56

Note: Numbers shown are speedup.
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time of the parallel algorithm. It is clear that fast CPUs do not provide significant speedup

for the parallel code presented here. This was true for all problem sizes we tested. From

this, we can conclude that parallel algorithm is executing almost entirely on the GPU and

keeping the overhead of executing on the CPU to a minimum.
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Figure 7. Developed serial code versus Towhee elapsed times (logarithmic normalisation).
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Figure 6. Plots of speedup for different block sizes on different platforms.
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Figure 8. Serial versus CUDA execution times for MC simulation on i5 and GeForce 480.

Table 6. Average program execution times (in seconds) and speedup for a million steps on i5 and
GeForce GTX 480.

N Serial CUDA(128) Speedup

256 6.5 11.0 0.6
512 12.1 11.3 1.1
1024 23.0 11.5 2.0
2048 43.0 12.5 3.5
4096 74.5 14.0 5.2
8192 128.2 17.1 7.5
16,384 238.8 26.7 9.0
32,768 450.6 44.7 10.1
65,536 847.0 74.3 11.4
131,072 1681.9 136.4 12.3
262,144 3659.8 243.7 15.0
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Figure 9. Execution times on two different platforms with GTX 480.
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7. Conclusions and future work

In this paper, an optimised implementation of a parallel CUDA algorithm for Markov

chain MC simulations has been presented. Optimisations have been applied to the

algorithm, such as the use of shared memory and load balancing among threads. In

addition, synchronisation techniques have been tested and several cases have been

considered. All key components of the parallel algorithm have been tailored to the GPU

for execution in a single kernel, which reduces overhead significantly.

The evaluation of the proposed algorithm on an affordable graphics processing unit

shows a speedup of up to 15 times compared with the optimised serial implementation, and

2303 times speedup compared with Towhee for a small problem of size 4096. Through the

process of developing the parallel algorithm, an empirical optimisation approach has been

applied. This approach centres on selecting optimal block sizes for kernel invocation,

which was 128 threads per block for large problem sizes.

The dramatic increase in speed achieved with GPU-based applications opens the door

for the design and analysis of experiments that were previously not feasible, running an

experiment in hours compared to days of computing time on a desktop computer. This will

assist researchers in simulating a number of large biomolecular systems that require

simulation of an open system (constant chemical potential).

The presented implementation of the MC simulation algorithm using CUDA can be

generalised. Therefore, it would be interesting to see whether this algorithm or its

extensions with other ensembles can be integrated into widely used scientific

applications. In addition, systems with more than one top of the line GPU are being

used in research laboratories and data centres. Yet, developing a highly flexible multi-

ensemble code capable of fully utilising the multiple devices on these high-performance

clusters is still a work in progress. Hence, in addition to expansion of the simulation

capabilities, a multi-GPU algorithm [8] for use in supercomputing clusters would allow

for faster performance and the handling of more particle data, opening the way to

simulations of even larger systems (e.g. a microparticle–nanoparticle open constant

chemical potential simulation).

Domain decomposition techniques for molecular systems are candidates to enhance

the performance by eliminating extra out of range calculations. However, the overhead of

maintaining a data structure of neighbouring particles for such low computation intensive

applications was not promising before. Now, with the possibility of simulating very

large systems, a neighbour list algorithm [14] could show decent speedup for systems

with 10,000 particles or more. This would be a natural extension to the work presented

here.
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Notes

1. Threads in the same warp do not need to be synchronised.
2. Although hundreds of millions of simulation steps are required to obtain scientifically accurate

simulation results, one million steps is sufficient to show the relative speedup of the GPU
code.
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