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Nonlocal games
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Nonlocal games
A nonlocal game is a cooperative game played between Alice and
Bob against a referee.
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1. Question and answer sets: (ΣA,ΣB) and (ΓA, ΓB),
2. Distributions on question pairs: π : ΣA × ΣB → [0, 1] ,
3. A predicate V : ΓA × ΓB × ΣA × ΣB → {0, 1}, where

V (a, b|x , y) =

{
1 if Alice and Bob win,

0 if Alice and Bob lose.
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Strategies and values for nonlocal games

Alice and Bob could use different types of strategies:

I Classical strategies: Alice and Bob answer deterministically,
determined by functions of f : ΣA → ΓA and g : ΣB → ΓB.

I Quantum strategies: Alice and Bob share a joint quantum
system ρ ∈ D(A⊗ B) and allow their answers to be outcomes
of measurements on this shared system.

The value of a nonlocal game is the maximal winning probability
for the players to win over all strategies of a specified type.

For a nonlocal game, G , we denote the classical and quantum
values as

I Classical value: ω(G ),

I Quantum value: ω∗(G ).
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Example: The CHSH game
The CHSH game (GCHSH). Question and answer sets over {0, 1}.
Question pairs {00, 01, 10, 11} selected with equal probability.
Winning condition iff a⊕ b = x ∧ y .

ω(GCHSH) < ω∗(GCHSH)

I ω(GCHSH) = 3
4 = 0.75:
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I ω∗(GCHSH) = cos2(π8 ) ≈ 0.8536:
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Demo Time: CHSH game in QETLAB
chsh game.m
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Extended nonlocal games
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Extended nonlocal games
An extended nonlocal game is a nonlocal game where the referee
also holds a quantum system that he measures provided by Alice
and Bob.
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1. Question and answer sets (ΣA,ΣB) and (ΓA, ΓB).

2. Distribution on question pairs: π : ΣA × ΣB → [0, 1].

3. A measurement operator V : ΓA × ΓB × ΣA × ΣB → Pos(R).
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Extended nonlocal games: Winning and losing probabilities

At the end of the protocol, the referee has:

1. The state at the end of the protocol:

ρx ,ya,b ∈ D(R).

2. A measurement the referee makes on its part of the state ρ:

V (a, b|x , y) ∈ Pos(R).

The respective winning and losing probabilities are given by〈
V (a, b|x , y), ρx ,ya,b

〉
and

〈
1− V (a, b|x , y), ρx ,ya,b

〉
.
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Monogamy-of-entanglement games



11/29

Monogamy-of-entanglement games
Monogamy-of-entanglement games¶, are a special type of
extended nonlocal game.
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1. Same question and answer sets: Σ = ΣA = ΣB and
Γ = ΓA = ΓB.

2. Alice and Bob get the same question: π(x , y) = 0 for x 6= y .
3. Referee’s measurement operator: R : Σ× Γ→ Pos(R).
4. Winning condition: Iff Alice’s output, Bob’s output, and the

referee’s output are all the equal.
¶[Tomamichel, Fehr, Kaniewski, Wehner, (2013)]
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Standard quantum strategies for
monogamy-of-entanglement games

A standard quantum strategy consists of a tripartite state
ρ ∈ D(R⊗A⊗ B) and sets of local measurements for Alice and
Bob.

I The winning probability for a monogamy-of-entanglement
game using a standard quantum strategy is:∑

x∈Σ

π(x)
∑
a∈Γ

〈
R(a|x)⊗ Ax

a ⊗ Bx
a , ρ

〉
.

The standard quantum value of a monogamy-of-entanglement
game, G , denoted as ω∗(G ), is the maximal winning probability for
Alice and Bob over all standard quantum strategies.
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Unentangled strategies for monogamy-of-entanglement
games

In an unentangled strategy, the state ρ prepared by Alice and Bob
is fully separable, that is

{ρR
j : j ∈ ∆} ⊆ D(R), {ρA

j : j ∈ ∆} ⊆ D(A), {ρB
j : j ∈ ∆} ⊆ D(B),

such that

ρ =
∑
j∈∆

p(j)ρR
j ⊗ ρA

j ⊗ ρB
j .

Winning probability for an unentangled strategy is given by:

∑
x∈Σ

π(x)
∑
a∈Γ

〈
R(a|x)⊗ Ax

a ⊗ Bx
a , ρ

〉
where ρ is separable.
The unentangled value, denoted as ω(G ), is the supremum of the
winning probability over all unentangled strategies.
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Unentangled value for monogamy-of-entanglement games

I For ω(G ), we want the best Alice and Bob can do.

I Since ρ is separable (no quantum correlations) we can imagine
Alice and Bob optimizing functions f : Σ→ Γ locally.

Alice and Bob only win when their outputs agree, and we assume
that the measurements of the referee are positive semidefinite
(from the definition for monogamy-of-entanglement games).

I For any monogamy-of-entanglement game, G , the
unentangled value is:

ω(G ) = max
f :Σ→Γ

∥∥∥∥∑
x∈Σ

π(x)R(f (x)|x)

∥∥∥∥,
where the maximum is over all functions f : Σ→ Γ.
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The BB84 monogamy-of-entanglement game
The BB84 game (GBB84 for short)¶ is defined by:

1. Question and answer sets:

Σ = Γ = {0, 1},

2. Uniform probability for questions:

π(0) = π(1) =
1

2

3. Measurements defined by the BB84 bases:

For x = 0: R(0|0) = |0〉〈0|, R(1|0) = |1〉〈1|
For x = 1: R(0|1) = |+〉〈+|, R(1|1) = |−〉〈−|

The unentangled and standard quantum values for GBB84 coincide:

ω(GBB84) = ω∗(GBB84) = cos2(π/8) ≈ 0.8536

¶GBB84 was introduced in [Tomamichel, Fehr, Kaniewski, Wehner, (2013)].
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Demo Time: BB84 game
bb84 game.m
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A natural question for monogamy-of-entanglement games

I Question: For any monogamy-of-entanglement game, G , is it
true that the unentangled and standard quantum values
always coincide? In other words is it true that:

ω(G ) = ω∗(G )

for all monogamy-of-entanglement games G?
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Demo Time: Random
monogamy-of-entanglement games

random moe games.m
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A natural question for monogamy-of-entanglement games

I Question: For any monogamy-of-entanglement game, G , is it
true that the unentangled and standard quantum values
always coincide? In other words is it true that:

ω(G ) = ω∗(G )

for all monogamy-of-entanglement games G?

I Answer:
I For certain cases: Yes.
I In general: No.
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ω(G ) = ω∗(G )
In general No
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Monogamy-of-entanglement games where ω(G ) 6= ω∗(G )
There exists a monogamy-of-entanglement game, G , with |Σ| = 4
and |Γ| = 3 such that

ω(G ) < ω∗(G ).

1. Question and answer sets:

Σ = {0, 1, 2, 3}, Γ = {0, 1, 2}.

2. Uniform probability for questions:

π(0) = π(1) = π(2) = π(3) =
1

4
.

3. Measurements defined by a mutually unbiased basis¶:

{R(0|x),R(1|x),R(2|x)}.

¶|ux(a)∗ux′(a)|2 = 1/|Γ| for R(a|x) = ux(a)ux(a)∗,R(a|x ′) = ux′(a)ux′(a)∗
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Demo Time: Mutually unbiased basis game
mub 4 3 game.m
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Monogamy-of-entanglement games where ω(G ) 6= ω∗(G )

I An exhaustive search over all unentangled strategies reveals
an optimal unentangled value:

ω(G ) =
3 +
√

5

8
≈ 0.6545.

I Alternatively, a computer search over standard quantum
strategies and a heuristic approximation for the upper bound
of ω∗(G ) reveals that:

2/3 ≥ ω∗(G ) ≥ 0.6609.

This ability to compute upper bounds for extended nonlocal games
is obtained from an adaptation of a technique known as the NPA
hierarchy.
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ω(G ) = ω∗(G )
For certain classes, Yes.
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Monogamy games that obey ω(G ) = ω∗(G )

Theorem (Johnston, Mittal, R, Watrous)

For any monogamy-of-entanglement game, G, for which |Σ| = 2:

ω(G ) = ω∗(G ).
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Parallel repetition of
monogamy-of-entanglement games
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Parallel repetition of monogamy-of-entanglement games
I Parallel repetition: Run a monogamy-of-entanglement game,

G , for n times in parallel, denoted as Gn.
I Strong parallel repetition: ω(Gn) = ω(G )n

R0,1

R0,n

R1,1

R1,n
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B

ρ
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X
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...

...

...
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Question: Do all monogamy-of-entanglement games obey strong
parallel repetition?
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Parallel repetition of monogamy-of-entanglement games

I Recall:

ω(GBB84) = ω∗(GBB84) = cos2(π/8) ≈ 0.8536.

I GBB84 obeys strong parallel repetition¶:

ω∗(Gn
BB84) = ω∗(GBB84)n =

(
cos2(π/8)

)n
.

¶[Tomamichel, Fehr, Kaniewski, Wehner, (2013)]
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Demo Time: Strong parallel repetition of BB84
bb84 parallel rep.m
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Upper bounds on strong parallel repetition for monogamy
games

Theorem (Tomamichel, Fehr, Kaniewski, Wehner)

Let G = (π,R) be a monogamy game where π is uniform over Σ.
It holds that

ω∗(Gn) ≤
(

1

|Σ|
+
|Σ| − 1

|Σ|
√

c(G )

)n

,

where c(G ) is the “maximal overlap of measurements” of the
referee

c(G ) = max
x ,y∈Σ
x 6=y

max
a,b∈Γ

∥∥∥∥√R(a|x)
√
R(b|y)

∥∥∥∥2

.
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Strong parallel repetition for certain monogamy games

Theorem (Johnston, Mittal, R, Watrous)

Let G = (π,R) be a monogamy game where |Σ| = 2, π is uniform
over Σ, and R(a|x) are projective operators. It holds that

ω∗(Gn) =

(
1

2
+

1

2

√
c(G )

)n

.
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A key proposition and lemma

Lemma
Let Π0 and Π1 be nonzero projection operators on Cn. It holds that

‖Π0 + Π1‖ = 1 + ‖Π0Π1‖.

Proposition

Let G = (π,R) be a monogamy-of-entanglement game for which
Σ = {0, 1}, π is uniform over Σ, and R(a|x) is a projection
operator for each x ∈ Σ and a ∈ Γ. It holds that

ω(G ) =
1

2
+

1

2
max
a,b∈Γ

∥∥∥∥R(a|0)R(b|1)

∥∥∥∥.
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Proof of proposition

Recall that the unentangled value for any monogamy game G is
written as

ω(G ) = max
f :Σ→Γ

∥∥∥∥∑
x∈Σ

π(x)R(f (x)|x)

∥∥∥∥.
Assuming the lemma stating ‖Π0 + Π1‖ = 1 + ‖Π0Π1‖, we have

ω(G ) = max
a,b∈Γ

∥∥∥∥R(a|0) + R(b|1)

2

∥∥∥∥ =
1

2
+

1

2
max
a,b∈Γ

∥∥∥∥R(a|0)R(b|1)

∥∥∥∥.
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Proof of theorem
From the proposition that

ω(G ) =
1

2
+

1

2

√
c(G ).

Since this is an unentangled strategy, we can assume that Alice
and Bob just play every instance optimally (since there is no
quantum correlation). It follows then that

ω(Gn) =

(
1

2
+

1

2

√
c(G )

)n

.

Recall that the theorem from [Tomamichel, Fehr, Kaniewski,
Wehner, (2013)] gives us

ω∗(Gn) ≤
(

1

2
+

1

2

√
c(G )

)n

,

which gives us that ω∗(Gn) ≤ ω(Gn). Finally,

ω∗(G n) ≥ ω(G n) ≥
(

1

2
+

1

2
max
a,b∈Γ

∥∥∥∥R(a|0)R(b|1)

∥∥∥∥)n

=

(
1

2
+

1

2

√
c(G )

)n

.
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Open questions
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Unentangled vs. standard quantum strategies for
monogamy-of-entanglement games

Inputs (|Σ|) Outputs (|Γ|) ω∗(G ) = ω(G ) ω∗(Gn) = ω∗(G )n ωns(G
n) = ωns(G )n

2 |Γ| ≥ 1 yes yes¶ no

3 |Γ| ≥ 1 ? ? no

4 3 no ? no

Question: What about |Σ| = 3?

I Proof technique fails for |Σ| > 2.
I Computational search:

I Generate random monogamy-of-entanglement games where
|Σ| = 3 and |Γ| ≥ 2.

I 108 random games generates, no counterexamples found.

¶So long as the measurements used by the referee are projective and the
probability distribution, π, from which the questions are asked is uniform.
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Thanks!
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