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Extended nonlocal games
An extended nonlocal game (ENLG) is specified by:
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I A probability distribution π : X × Y → [0, 1] for alphabets X
and Y .

I A collection of measurement operators
{Pa,b,x ,y : a ∈ A, b ∈ B, x ∈ X , y ∈ Y } ⊂ Pos(R) where R
is the space corresponding to R and A,B are alphabets.
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Extended nonlocal games
An (ENLG) is played in the following manner:
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1. Alice and Bob present referee with register R.

2. Referee generates (x , y) ∈ X × Y according to π and sends x
to Alice and y to Bob. Alice responds with a and Bob with b.

3. Referee measures R w.r.t. measurement
{Pa,b,x ,y ,1− Pa,b,x ,y}. Outcome is either loss or win.
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Strategies for extended nonlocal games

One may consider strategies for Alice and Bob in an ENLG1:
I Standard quantum strategies:

I σ ∈ D(U ⊗R⊗ V).
I {Ax

a : a ∈ A} ⊂ Pos(U) and {By
b : b ∈ B} ⊂ Pos(V).

I Unentangled strategies: Standard quantum strategy where:
I σ is separable.

I Commuting measurement strategies: Standard quantum
strategy where:

I σ ∈ D(R⊗H),
I [Ax

a ,B
y
b ] = 0 for all x , y , a, b.

I Non-signaling strategies:
I Satisfies non-signaling constraints.

1
Chapter 3: “Extended nonlocal games”.
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Values of extended nonlocal games

The value of an ENLG, G , is the maximal winning probability for
the players to win over all strategies of a specified type:2

I Unentangled: ω(G ),

I Standard quantum: ω∗(G ),

I Commuting measurement: ωc(G ),

I Non-signaling: ωns(G ).

The values obey the following relationship:

0 ≤ ω(G ) ≤ ω∗(G ) ≤ ωc(G ) ≤ ωns(G ) ≤ 1.

2
Chapter 3: “Extended nonlocal games”.
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Finite-dimensional standard quantum strategies
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Finite-dimensional standard quantum strategies

ω∗N(G ): The standard quantum value of G when Alice and Bob
use a state σ such that dim(U ⊗ V) = N:

Since ω∗(G ) is over all standard quantum strategies (irrespective
of dimension on σ):

ω∗(G ) = lim
N→∞

ω∗N(G ).

Result:3 There exists an ENLG, G , such that ω∗(G ) = 1 and
ω∗N(G ) < 1 when N is finite.

I Proof is inspired by the class of “quantum XOR games” as
introduced by Regev and Vidick.4

I Implies the existence of a tripartite steering inequality for
which an infinite-dimensional state is required to achieve
maximal violation.

3
Chapter 4: “On the properties of the extended nonlocal game model”.

4
Regev, Vidick: “Quantum XOR games”.
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Bounding the values of extended nonlocal games
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Calculating values of extended nonlocal games

One may either directly calculate or bound the value of extended
nonlocal games:

I ω(G ): A closed form expression exists that allows one to
directly calculate this value.

I ωns(G ): May be phrased as an semidefinite program.
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Calculating the standard quantum values of extended
nonlocal games

I The extended QC hierarchy: extension of the QC hierarchy5,6

that may be used to upper bound the standard quantum value
for ENLGs.7

ωc(G) · · · ω2
c (G) ω1

c (G)

I ω∗(G ): Extended QC hierarchy to upper bound. May also
adapt “see-saw” method8 for lower bounds.

I ωc(G ): Extended QC hierarchy.

5
Doherty, Liang, Toner, Wehner: “The quantum moment problem and bounds on entangled multi-prover

games”, (2008).
6

Navascues, Pironio, Acin: “A convergent hierarchy of semidefinite programs characterizing the set of
quantum correlations”, (2008).

7
Chapter 5: “Bounding the standard quantum value of extended nonlocal games.”

8
Liang, Doherty: “Bounds on Quantum Correlations in Bell Inequality Experiments”, (2007).
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Monogamy-of-Entanglement games
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Monogamy-of-entanglement games
Monogamy-of-entanglement games9, are a special type of extended
nonlocal game.
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x
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a

b

1. Same question and answer sets: X and A.

2. Alice and Bob get the same question: π(x , y) = 0 for x 6= y .

3. Referee’s measurement operator: P : A× X → Pos(R).

4. Winning condition: Iff Alice’s output, Bob’s output, and the
referee’s output are all the equal.

9
Tomamichel, Fehr, Kaniewski, Wehner : “A Monogamy-of-Entanglement Game With Applications to

Device-Independent Quantum Cryptography”, (2013).
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Parallel repetition of monogamy-of-entanglement games

I The following statements were proved in:10

ω(GBB84) = ω∗(GBB84) = cos2(π/8) ≈ 0.8536.

I GBB84 obeys strong parallel repetition:

ω∗(Gn
BB84) = ω∗(GBB84)n =

(
cos2(π/8)

)n
.

10
Tomamichel, Fehr, Kaniewski, Wehner : “A Monogamy-of-Entanglement Game With Applications to

Device-Independent Quantum Cryptography”, (2013).
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Further properties of monogamy-of-entanglement games

General properties about monogamy-of-entanglement games:11

I For any monogamy-of-entanglement game, G , for which
|X | = 2:

ω(G ) = ω∗(G ).

I There exists a monogamy-of-entanglement game, G , with
|X | = 4 and |A| = 3 such that:

ω(G ) < ω∗(G ).

11
Johnston, Mittal, R., Watrous: “Extended nonlocal games and monogamy-of-entanglement games”, (2015).
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Parallel repetition of monogamy-of-entanglement games
Parallel repetition of monogamy-of-entanglement games:12

I Let G = (π,P) be a monogamy game where |X | = 2, π is
uniform over X , and Pa,x are projective operators. It holds
that for all n:

ω∗(Gn) =

(
1

2
+

1

2

√
c(G )

)n

,

where c(G ) is the maximal overlap of the referee’s
measurements:

c(G ) = max
x ,y∈X
x 6=y

max
a,b∈A

∥∥∥∥√Pa,x

√
Pb,y

∥∥∥∥2

.

I There exists a monogamy-of-entanglement game, G , such that

ωns(G
2) 6= ωns(G )2.

12
Johnston, Mittal, R., Watrous: “Extended nonlocal games and monogamy-of-entanglement games”, (2015).
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Thanks!

Thank you for your attention!
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Extended nonlocal games: Winning and losing probabilities

At the end of the protocol, the referee has:

1. The state at the end of the protocol:

σx ,ya,b ∈ D(R).

2. A measurement the referee makes on its part of the state σ:

Pa,b,x ,y ∈ Pos(R).

The respective winning and losing probabilities are given by:〈
Pa,b,x ,y , σ

x ,y
a,b

〉
and

〈
1− Pa,b,x ,y , σ

x ,y
a,b

〉
.
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Assemblages
When analyzing a strategy for Alice and Bob, it may be convenient
to define a function:

K : A× B × X × Y → Pos(R).

We refer to K as an assemblage.

The assemblage K represents unnormalized states of the referee’s
system. We can normalize to obtain:

σx ,ya,b =
K (a, b|x , y)

Tr(K (a, b|x , y)
.

The function K encodes the probability that Alice and Bob obtain
answers a and b given questions x and y . The winning probability
can then be represented as∑

(x ,y)∈X×Y
(a,b)∈A×B

〈
Pa,b,x ,y ,K (a, b|x , y))

〉
.
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Standard quantum strategies for ENLGs
A standard quantum strategy consists of complex Euclidean spaces
R,U , and V as well as

I Shared state: σ ∈ D(U ⊗R⊗ V),
I Measurements: {Ax

a} ⊂ Pos(U), {By
b } ⊂ Pos(V).

Winning probability for a standard quantum strategy is given by:∑
(x ,y)∈X×Y
(a,b)∈A×B

π(x , y)

〈
Ax
a ⊗ Pa,b,x ,y ⊗ By

b , σ

〉
.

Equivalently, the winning probability for such a strategy is given by∑
(x ,y)∈X×Y
(a,b)∈A×B

〈
Pa,b,x ,y ,K (a, b|x , y)

〉
,

where

K (a, b|x , y) = TrU⊗V
(
(Ax

a ⊗ 1R ⊗ By
b )σ
)
.
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Standard quantum values for ENLGs

ω∗(G ): Standard quantum value of an ENLG, G :

I Supremum winning probability of G over all standard
quantum strategies.

Note: Supremum is not always achieved for ω∗(G ) since the
dim(U) and dim(V) is not a priori bounded.

I There exists a sequence of strategies where as the dimension
increases, the probabilities converge to, but never reach, its
standard quantum value.13

Note: Not known if supremum is always achieved for ω∗(G ) where
G is a nonlocal game.

13
R., Watrous : Extended nonlocal games from quantum-classical games (2017).
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Unentangled strategies

In an unentangled strategy, the state σ prepared by Alice and Bob
is fully separable, that is,

{σU
j : j ∈ ∆} ⊆ D(U), {σR

j : j ∈ ∆} ⊆ D(R), {σV
j : j ∈ ∆} ⊆ D(V),

such that

σ =
∑
j∈∆

p(j)σU
j ⊗ σR

j ⊗ σV
j .

Winning probability for an unentangled strategy is given by:

∑
(x ,y)∈X×Y

π(x , y)
∑

(a,b)∈A×B

〈
Ax
a ⊗ Pa,b,x ,y ⊗ By

b , σ

〉

where σ is separable.
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Unentangled value

The unentangled value, denoted as ω(G ), is the supremum of the
winning probability over all unentangled strategies.

For an unentangled strategy, we have that the referee, Alice, and
Bob share

σ =
∑
j∈∆

p(j)σU
j ⊗ σR

j ⊗ σV
j .

I For ω(G ), we want the best Alice and Bob can do.

I Since σ is separable (no quantum correlations) pick best j :

σ = σU ⊗ σR ⊗ σV.
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Unentangled value

In an unentangled strategy, Alice and Bob provide the referee with
a pure state σ ∈ D(R) and Alice responds to question x with
a = f (x) and Bob responds to y with b = f (y) for some
deterministic functions mapping from the input to output sets.

The unentangled value, denoted as ω(G ), is written as

ω(G ) = max
f ,g

∥∥∥∥∑
x ,y

π(x , y)Pf (x),g(y),x ,y

∥∥∥∥,
where the maximum is over all functions

f : X → A and g : Y → B.
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Commuting measurement strategies

A commuting measurement strategy consists of a complex
Euclidean space R and a (possibly) infinite-dimensional Hilbert
space H as well as

I Shared state: σ ∈ D(R⊗H),

I Measurements {Ax
a} ⊂ Pos(H), {By

b } ⊂ Pos(H) such that[
Ax
a ,B

y
b

]
= 0

for all x ∈ X , y ∈ Y , a ∈ A, and b ∈ B.
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Commuting measurement strategies

Winning probability for a commuting measurement strategy is
given by ∑

(x ,y)∈X×Y
(a,b)∈A×B

〈
Pa,b,x ,y ⊗ Ax

aB
y
b , σ

〉
.

Equivalently, the winning probability for such a strategy is given by∑
(x ,y)∈X×Y
(a,b)∈A×B

〈
Pa,b,x ,y ,K (a, b|x , y)

〉
,

where

K (a, b|x , y) = TrH
(
1R ⊗ (Ax

aB
y
b )σ
)
,

is a commuting measurement assemblage.
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Commuting measurement values for ENLGs

ωc(G ): Commuting measurement value of an ENLG, G :

I Supremum winning probability of G over all commuting
measurement strategies.

Note: Supremum is achieved.
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Non-signaling strategies
A non-signaling strategy consists of a non-signaling assemblage

K : A× B × X × Y → Pos(R)

such that∑
a∈A

K (a, b|x , y) = ξyb and
∑
b∈B

K (a, b|x , y) = ρxa ,

for all x ∈ X and y ∈ Y where∑
a∈A

ρxa = τ =
∑
b∈B

ξyb ,

where τ ∈ D(R).

The winning probability for a non-signaling strategy is given by∑
(x ,y)∈X×Y
(a,b)∈A×B

〈
Pa,b,x ,y ,K (a, b|x , y)

〉
,

where K is a non-signaling assemblage.
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Non-signaling values for ENLGs
ωns(G ): Non-signaling value of an ENLG, G :

I Supremum winning probability of G over all non-signaling
strategies.

Note: Supremum is achieved since the set of non-signaling
assemblages is compact and therefore closed and bounded, which
implies that the supremum is achieved.
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Supplementary material:
Steering and extended nonlocal games
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Bipartite steering
Alice and Bob each receive part of a quantum state (sent by the
referee). Their goal is to determine whether this state is entangled.

R0 R1

A

B

σ
x

U

V

x a

I Bob’s measurement device is “trusted“, whereas Alice’s is not:

I Outcome of Alice’s measurements are only ±1 (a conclusive
outcome) or 0 (a non-conclusive outcome).

I To demonstrate entanglement, Alice needs to “steer” Bob’s
state by her choice of measurement.
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NLGs, ENLGs, and steering

Bipartite steering with one
untrusted party:

R0 R1

A

B

σ
x

U

V

x a

Bipartite steering with two
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Tripartite steering with one
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Tripartite steering with two
untrusted parties (ENLG):
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ENLG and steering

Tripartite steering: same thing as before, only now we have three
parties where two members are untrusted and one member is
trusted.

In tripartite steering, Alice and Bob are the untrusted parties, and
the referee is the trusted party.
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Supplementary material:
Finite-dimensional standard quantum strategies
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Quantum-classical games
A quantum-classical game (QCG) is a cooperative game played
between Alice and Bob against a referee.

R0 R1

A

B

σ

U

V

X

Y

S

a

b

Specified by:

I A state ρ ∈ D(X ⊗ S ⊗ Y) in registers (X,S,Y).

I Collection of measurement operators
{Qa,b : a ∈ A, b ∈ B} ⊂ Pos(S) for alphabets A and B.
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Quantum-classical games
A (QCG) is played in the following manner.

R0 R1

A

B

σ

U

V

X

Y

S

a

b

1. Referee prepares (X, S,Y) in state ρ and sends X to Alice and
Y to Bob.

2. Alice responds with a ∈ A and Bob with b ∈ B.

3. Referee measures S w.r.t. measurement {Qa,b,1− Qa,b}.
The outcome of this measurement results in “0” or “1”,
indicating a loss or a win.
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Entangled strategies for QCGs

For a QCG, an entangled strategy consists of complex Euclidean
spaces U and V as well as

I Shared state: σ ∈ D(U ⊗ V),

I Measurements: {Aa : a ∈ A} ⊂ Pos(U ⊗X ), {Bb : b ∈ B} ⊂ Pos(V ⊗Y).

Winning probability for a entangled strategy is given by:∑
(a,b)∈A×B

〈
Aa ⊗ Qa,b ⊗ Bb,W (σ ⊗ ρ)W ∗

〉
,

where W is the unitary operator that corresponds to the natural
re-ordering of registers consistent with the tensor product
operators.
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Entangled values for QCGs

For any QCG denoted as G , the entangled value of G , denoted as
ω∗(G ), represents the supremum of the winning probabilities taken
over all entangled strategies.

We may also write ω∗N(G ) to denote the maximum winning
probability taken over all entangled strategies for which
dim(U ⊗ V) = N, so that the entangled value of G is

ω∗(G ) = lim
N→∞

ω∗N(G ).
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Values and the dimension of shared entanglement

Question: Does the dimensionality of the state that Alice and Bob
share determine how well Alice and Bob perform?

Partial answer: Regev and Vidick showed that there exists a
specific class of QCG such that if the dimension of Alice and Bob’s
quantum system, N, is finite then ω∗N(G ) < 1, but ω∗(G ) = 1.14

What about ENLG?

14
Regev, Vidick, (2012): “Quantum XOR games”.
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Relationship between ENLGs and QCGs

Main question: Does there also exist an ENLG, H, such that
ω∗(H) = 1 and ω∗N(H) < 1 when N is finite?

I It is possible to construct an ENLG from any QCG (not
obvious).

R0 R1

A

B

σ

U

V

X

Y

S

a

b

R0 R1

A

B

σ
x, y

U

V

R

x

y

a

b

I From this construction, it turns out that this property also
holds for ENLG, that is, there does exist an ENLG such that
Alice and Bob can only win with certainty iff they share an
infinite-dimensional state.



19/19

Relationship between ENLGs and QCGs

Main question: Does there also exist an ENLG, H, such that
ω∗(H) = 1 and ω∗N(H) < 1 when N is finite?

I It is possible to construct an ENLG from any QCG (not
obvious).

R0 R1

A

B

σ

U

V

X

Y

S

a

b

R0 R1

A

B

σ
x, y

U

V

R

x

y

a

b

I From this construction, it turns out that this property also
holds for ENLG, that is, there does exist an ENLG such that
Alice and Bob can only win with certainty iff they share an
infinite-dimensional state.



19/19

Relationship between ENLGs and QCGs

Main question: Does there also exist an ENLG, H, such that
ω∗(H) = 1 and ω∗N(H) < 1 when N is finite?

I It is possible to construct an ENLG from any QCG (not
obvious).

R0 R1

A

B

σ

U

V

X

Y

S

a

b

R0 R1

A

B

σ
x, y

U

V

R

x

y

a

b

I From this construction, it turns out that this property also
holds for ENLG, that is, there does exist an ENLG such that
Alice and Bob can only win with certainty iff they share an
infinite-dimensional state.



19/19

Main restriction

Show that for an arbitrary and fixed strategy for G , that it’s
possible to adapt this strategy for H.

Main restriction: In G , the referee is sending quantum registers,
but in H, the referee is restricted to sending classical questions.
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B
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Relationship between ENLGs and QCGs

We want to establish a relationship between QCGs and ENLGs.
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Approach:

I Show relationship between QCG and something called a
“teleportation game”.

I Show relationship between teleportation game and ENLG.
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Teleportation games
A teleportation game is specified by

R0 R1

T

T

A

B

σ

X1

Y1

U

V

S

X

Y

x

y

a

b

I A state ρ ∈ D(X ⊗ S ⊗ Y) in (X, S,Y).
I A collection of measurement operators

{Qa,b : a ∈ A, b ∈ B} ⊂ Pos(S),

where A and B are alphabets.



19/19

Teleportation games
A teleportation game is played in the following way:

R0 R1

T

T

A

B

σ

X1

Y1

U

V

S

X

Y

x

y

a

b

I Referee is presented with R = (X1,Y1) (where X1 and Y1 are
copies of X and Y).

I Referee prepares (X, S,Y) in state ρ and performs Bell
measurements on (X,X1) and (Y,Y1).

I Alice and Bob respond with a and b.
I Referee measures S w.r.t. {Qa,b,1− Qa,b}.
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Teleportation games and QCGs

Lemma
Given any QCG, Gqc with registers (X,Y), there exists a
teleportation game, Gt , s.t.

ω∗N(Gqc) ≤ ω∗N|X||Y|(Gt) and ω∗N(Gt) ≤ ω∗N|X||Y|(Gqc),

for all N ≥ 1.

Main approach:
I First inequality:

I Alice and Bob play honestly, i.e. they play along and perform
teleportation as expected.

I Second inequality:
I Alice and Bob play dishonestly. Alice and Bob perform a

teleportation protocol “to themselves”.
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Teleportation games and QCGs
ω∗N(Gqc) ≤ ω∗N|X||Y|(Gt):

σ1

ψX

ψY

A

B

W

W

R0

T

T

R1

a

b

x

y

X1

Y1

X

Y

X

Y

S

X0

Y0

U1

V1

I Halves of MES in registers X1 and Y1 are sent to referee.
I Referee prepares state in (X,S,Y), measures (X,X1) and

(Y,Y1) in Bell basis.
I Alice and Bob apply Pauli corrections on (U1,X0) and

(V1,Y0), thereby transmitting X and Y.
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Teleportation games and QCGs
ω∗N(Gt) ≤ ω∗N|X||Y|(Gqc):

1. States:
I σ in (U,X1,Y1,V),
I ρ prepared by referee in (X,S,Y).

2. Alice and Bob measure (X,X1) and (Y,Y1) in Bell basis
yielding outcomes x and y .

3. Alice and Bob perform measurements

{Ax
a : a ∈ A} ⊂ Pos(U) and {By

b : b ∈ B} ⊂ Pos(V)

and obtain outcomes a and b.
I Steps 2 and 3 may be described by measurement operators∑

x∈X

Ax
a ⊗ φ|X|x and

∑
y∈Y

By
b ⊗ φ|Y|y

in registers (U,X1,X) and (V,Y1,Y).

4. Finally referee measures on S.
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ENLGs and teleportation games

Lemma
For any teleportation game Gt with registers (X,Y), there exists an
ENLG Ht such that

ω∗N(Ht) = 1− 1− ω∗N(Gt)

|X|2|Y|2

for all N.

1. Describe how Ht is played.

2. Proceed to show the above Lemma.
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Post-selected teleportation protocol for Ht

σ
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Step 1: Post-selected teleportation protocol for Ht

The state σ ∈ D(U ⊗ (X1 ⊗ Y1)⊗ V) is prepared.

σ

A

B

T

T

X1

Y1

U

V
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Step 2: Post-selected teleportation protocol for Ht

Referee randomly selects and sends (x , y); keeps a local copy. Alice
and Bob respond with (a, b).
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y

x

y
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Step 3: Post-selected teleportation protocol for Ht

Referee prepares ρ ∈ D(X ⊗ S ⊗ Y). Performs teleportation using
(X,X1) and (Y,Y1) resulting in outcomes (x1, y1).

σ
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Step 4: Post-selected teleportation protocol for Ht

1. If x 6= x1 or y 6= y1: teleportation fails; Alice and Bob win.

2. If x = x1 and y = y1: teleportation succeeds; referee
measures.

σ
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B
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T
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U
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ENLGs and teleportation games: Main proof idea

Main approach:

1. Consider a Gt and Ht , which are defined by the same objects:

ρ ∈ D(X ⊗ S ⊗ Y) and {Qa,b} ⊂ Pos(S).

2. In both games, a strategy is defined by:

σ ∈ D(U ⊗ (X1 ⊗ Y1)⊗ V), {Ax
a} ⊂ Pos(U), and {By

b } ⊂ Pos(V).

We will consider the winning and losing probabilities for this
strategy for Gt and Ht .
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ENLGs and teleportation games: Gt

For Gt , the winning probability, denoted by p, is given by:

p =
∑

(x ,y)∈X×Y
(a,b)∈A×B

〈
Ax
a ⊗ φ|X|x ⊗ Qa,b ⊗ φ|Y|y ⊗ By

b ,W (ρ⊗ σ)W ∗
〉
,

where φ
|X|
x and φ

|Y|
y are Bell measurements.

Likewise, the losing probability for Gt is given by:

1− p =
∑

(x ,y)∈X×Y
(a,b)∈A×B

〈
Ax
a ⊗ φ|X|x ⊗ (1− Qa,b)⊗ φ|Y|y ⊗ By

b ,W (ρ⊗ σ)W ∗
〉
.
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ENLGs and teleportation games: Ht

For Ht the winning probability, denoted by q, is given by:

q =
1

|X|2|Y|2
∑

(x ,y)∈X×Y
(a,b)∈A×B

〈
Ax
a ⊗ Px ,y ,a,b ⊗ By

b ,W (ρ⊗ σ)W ∗
〉
.

Likewise, the losing probability for Ht is given by:

1− q =
1

|X|2|Y|2
∑

(x,y)∈X×Y
(a,b)∈A×B

〈
Ax

a ⊗ (1− Px,y,a,b)⊗ By
b ,W (ρ⊗ σ)W ∗

〉

=
1

|X|2|Y|2
∑
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|X|2|Y|2 (1− p),

where again p is the winning probability for Gt .
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ENLGs and teleportation games

In both cases, the cost of the strategy is the same

N = dim(U ⊗ V).

Optimizing over strategies of cost N gives

ω∗N(Ht) = 1− 1− ω∗N(Gt)

|X|2|Y|2 .
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Proving relationship between ENLGs and QCGs
By recalling the correspondence between:

1. QCG ↔ teleportation game,

2. Teleportation game ↔ ENLG,

we obtain a direct correspondence between QCGs and ENLGs.
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Supplementary material:
Variations on extended nonlocal games
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Quantum-classical-quantum extended nonlocal games

One may also investigate other models of extended nonlocal games
where the variance is with respect to the type of communication.

A quantum-classical-quantum extended nonlocal game (QCQ
ENLG) is an ENLG where the answers are quantum registers
instead of classical strings.
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Quantum-classical-quantum extended nonlocal games

One may define various strategies for a QCQ ENLG. A standard
quantum strategy consists of

1. Shared state: σ ∈ D(U ⊗R⊗ V).

2. Collection of channels: {Φx} ⊂ C(U ,A) and {Φy} ⊂ C(V,B).

The winning probability for such a strategy is given by:∑
(x ,y)∈X×Y

〈
Px ,y ,

(
Φx ⊗ 1L(R) ⊗ Φy

)
(σ)

〉
.
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Supplementary material:
Determining the value of extended nonlocal

games
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Calculating the unentangled value of ENLGs

Recall that

ω(G ) = max
f ,g

∥∥∥∥∑
x ,y

π(x , y)Pf (x),g(y),x ,y

∥∥∥∥,
where the maximum is over all functions

f : X → A and g : Y → B.

This may be easily calculated in MATLAB (for instance), and is
implemented along with other ENLG functionality on Github.15

15
github.com/vprusso/phd thesis
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Calculating the non-signaling value of ENLGs

The non-signaling value can be calculated by a semidefinite
program where the non-signaling constraints are the “subject to”
conditions:

Primal problem

maximize:
1

|X||Y|
∑

(x ,y)∈X×Y
(a,b)∈A×B

〈
Pa,b,x ,y ,K (a, b|x , y)

〉

subject to:
∑
a∈A

K (a, b|x , y) = ξyb , ∀x ∈ X ,∑
b∈B

K (a, b|x , y) = ρxa , ∀y ∈ Y ,∑
a∈A

ρxa = τ =
∑
b∈B

ξyb , ∀x ∈ X , y ∈ Y ,

τ ∈ Pos(R).
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Supplementary material:
Upper bounds for extended nonlocal games
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The QC hierarchy: Upper bounds for nonlocal games

I The QC hierarchy is a method of placing upper bounds on the
quantum value of nonlocal games.

I Hierarchy of semidefinite programs is guaranteed to converge
to the commuting measurement value for some finite level, k
of the hierarchy.

I The commuting measurement value is an upper bound on the
quantum value, ω∗(G ) ≤ ωc(G ), for all nonlocal games, G .

ωc(G) · · · ω2
c (G) ω1

c (G)
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The QC hierarchy: Main idea

I Finding a quantum state and measurements for a quantum
strategy is a computationally difficult task.

I Instead then, let’s think about a set of weaker conditions that
correspond to a commuting measurement strategy.

I In the QC hierarchy, each condition amounts to verifying the
existence of a positive semidefinite matrix with structure that
depends on algebraic properties satisfied by a commuting
measurement strategy.

I If any of these conditions are violated, we may conclude that
there does not exist an adequate state and sets of
measurements.
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The extended QC hierarchy

Recall the commuting measurement value of an ENLG may be
obtained by maximizing∑

(x ,y)∈X×Y

π(x , y)
∑

(a,b)∈A×B

〈
Pa,b,x ,y ,K (a, b|x , y)

〉
,

where K is a commuting measurement assemblage operator.

The extended QC hierarchy allows us to phrase the above as∑
(x ,y)∈X×Y

π(x , y)
∑

(a,b)∈A×B

〈
Pa,b,x ,y ,M

(k)((x , a), (y , b))

〉
,

where M(k) is some matrix parametrized by some integer k with
entries indexed by a, b, x , y satisfying certain constraints.
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Primal problem

maximize:
〈
Pa,b,x,y ,M

(k)
〉

subject to:

{
normalization

∑
i

M
(k)
i,i (ε, ε) = 1,

{
measurements sum to 1

∑
a

M
(k)
i,j ((x , a), (y , b)) = M

(k)
i,j (1, (y , b)) ,∑

b

M
(k)
i,j ((x , a), (y , b)) = M

(k)
i,j ((x , a), 1) ,

{
projective measurements

M
(k)
i,j (1, (y , b)) = M

(k)
i,j ((y , b), (y , b)) ,

M
(k)
i,j ((x , a), 1) = M

(k)
i,j ((x , a), (x , a)) ,{

commutation

M
(k)
i,j ((x , a), (y , b)) = M

(k)
i,j ((y , b), (x , a)) ,

M(k) ∈ Pos(R).
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Strings
In order to index into M(k)((x , a), (y , b)), we will consider strings.

Define

∆ = (X × A) ∪· (Y × B) ,

define ∆∗ to denote the set of all strings (of finite length) over ∆.

We may also want to refer to the set of all strings of some length.
For instance for k = 1, we have that

∆≤1 = {ε} ∪ {(x , a)} ∪ {(y , b)}.

For example, we can refer to operators (or products of operators)
as tuples of concatenated strings. For example:

Ax
a → (x , a), and

Ax1
a1
. . .Axk

ak
→ (x1, a1) . . . (xk , ak).

Similarly for Bob.
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Equivalence relations for strings

The measurements in a commuting measurement strategy are
projective and they commute. This property can be conveyed in
terms of a string relation:

For all strings s, t ∈ ∆∗,

1. Projective: sσt ∼ sσσt for all σ ∈ ∆

2. Commute: sστ t ∼ sτσt for all σ ∈ X × A and τ ∈ Y × B.
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Admissible functions
The function

φ : ∆∗ → C

is admissible iff it satisfies the following conditions:

1. Measurements sum to identity:∑
a∈A

φ(s(x , a)t) =
∑
b∈B

φ(s(y , b)t) = φ(st),

for all x , y ∈ X × Y .

2. For every string s, t ∈ ∆∗:

φ(s(x , a)(x , a′)t) = 0 and φ(s(y , b)(y , b′)t) = 0

for all x ∈ X and a, a′ ∈ A s.t. a 6= a′ and b, b′ ∈ B s.t.
b 6= b′.

3. For all s, t ∈ Σ∗ where s ∼ t:

φ(s) = φ(t).
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k-th order admissible matrices

We call the matrix M(k) an k-th order admissible matrix if

1. There exists an admissible function

φ : ∆≤k → C,

such that

M(k)(s, t) = φ(sRt) ∀s, t ∈ ∆≤k ,

2. Normalization: M(k)(ε, ε) = 1,

3. M(k) is positive semidefinite.
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k-th order pseudo commuting measurement assemblages

Define an k-th order pseudo commuting measurement assemblage

K : A× B × X × Y → L(Cm),

for which there exists an k-th order admissible matrix M(k) such
that

K (a, b|x , y) = M(k)((x , a), (y , b)) ∀x , y , a, b.
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The extended QC hierarchy

Theorem
Let X ,Y ,A, and B be alphabets, let m be a positive integer, let
R = Cm be a complex Euclidean space, and let

K : A× B × X × Y → L(R)

be a function. The following statements are equivalent:

1. The function K is a commuting measurement assemblage.

2. The function K is a k-th order pseudo commuting
measurement assemblage for every positive integer k .

Note: For m = 1, this is precisely the original QC hierarchy
theorem.
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The extended QC hierarchy: 1 =⇒ 2

Let K be a commuting measurement assemblage. Then K is also a
k-th order pseudo commuting measurement assemblage for every k
(easier direction):

I Since K is a commuting measurement assemblage, we have:

{Ax
a : a ∈ A} ⊂ Pos(H) and {By

b : b ∈ B} ⊂ Pos(H),

along with a pure state u ∈ R⊗H where

u =
m∑
j=1

ej ⊗ uj ,

where u1, . . . , um ∈ H.
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The extended QC hierarchy: 1 =⇒ 2

Since we have a state and measurements, we just need to show
that those can be used to define a k-th order pseudo commuting
measurement assemblage. This just follows more or less from the
definition:

I Shorthand Πz
c to be either measurement for Alice or Bob.

I The matrix M(k) has entries

M
(k)
i ,j (s, t) = φi ,j(s

Rt)

where

φi ,j ((z1, c1) . . . (z`, c`)) = uiΠ
z1
c1
· · ·Πz`

c`
uj
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The extended QC hierarchy: 2 =⇒ 1

Assuming we are given K as a k-th order pseudo commuting
measurement assemblage for every k, show that this is equivalent
to K being a commuting measurement assemblage (harder
direction).

The proof approach for this direction is summarized below:

1. Show that the matrices M(k) admit a proper limit:

lim
k→∞

M(k) → M.

2. Construct a quantum state and sets of measurements from M
that satisfy properties of a commuting measurement strategy:

2.1 Construct ρ ∈ D(R⊗H) from M.
2.2 Construct measurements

{Ax
a : a ∈ A} ⊂ Pos(H) and {By

b : b ∈ B} ⊂ Pos(H)

from M.
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The extended QC hierarchy: 2 =⇒ 1

In order to define the limit, we must show the entries of M(k) are
bounded:

Lemma
Let m, k ≥ 1 be positive integers. Then a k-th order admissible
matrix, M(k), satisfies

|M(k)
i ,j (s, t)| ≤ 1,

for every i , j ∈ {1, . . . ,m} and all s, t ∈ ∆≤k .
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The extended QC hierarchy: 2 =⇒ 1

Proof: We know M(k) is PSD. By definition, any 2× 2 submatrix
is also PSD: (

M
(k)
i ,i (s, s) M

(k)
i ,j (s, t)

M
(k)
j ,i (t, s) M

(k)
j ,j (t, t)

)
.

1. Off-diagonal (follows from PSD property):

|M(k)
i ,j (s, t)| ≤

√
M

(k)
i ,i (s, s)

√
M

(k)
j ,j (t, t)

2. Diagonal (follows from routine calculation on admissible
function def.):

M
(k)
i ,i ((z , c)t, (z , c)t) ≤ M

(k)
i ,i (t, t).
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The extended QC hierarchy: 2 =⇒ 1
Matrix is bounded. Now let’s show a proper limit exists:

I Create M̂(k): a matrix we obtain by padding the blocks of
M(k) in a way to make them infinite.

I By Banach-Alaoglu theorem, we have that:

lim
l→∞

M̂(kl ) → M,

where M is an infinite matrix s.t.

M =

M1,1 . . . M1,m

...
. . .

...
Mm,1 . . . Mm,m


where

Mi,j : ∆∗ ×∆∗ → C

for each i , j ∈ {1, . . . ,m}.
I This M matrix satisfies the same constraints that the M(k)

matrix does (that is, it is a k-th admissible matrix).
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The extended QC hierarchy: 2 =⇒ 1

Each block of M may be written as

Mi ,j(s, t) =
〈
ui ,s , uj ,t

〉
,

for all i , j ∈ {1, . . . ,m} and s, t ∈ ∆∗ where the vectors

{ui ,s : i ∈ {1, . . . ,m}, s ∈ ∆∗} ⊂ H.
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The extended QC hierarchy: 2 =⇒ 1

Now that we have the infinite matrix, M, we need to show how a
state and sets of measurements arise that satisfy the constraints
for a commuting measurement assemblage. Specifically:

1. Define a state from M satisfying the specifications of a
commuting measurement assemblage.

2. Define sets of measurements for Alice and Bob satisfying the
specifications of a commuting measurement assemblage:

2.1 Measurements are projective.
2.2 Measurements commute.
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The extended QC hierarchy: 2 =⇒ 1 (constructing
quantum state)

Create state from commuting assemblage:

1. Define a pure state that corresponds to the vector

u =
m∑
j=1

ej ⊗ uj ,ε ∈ R⊗H.

2. The vector u is a unit vector (verified by calculation).
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The extended QC hierarchy: 2 =⇒ 1 (constructing
measurements)

Create measurements from commuting assemblage:

1. Define Πz
c to represent the projection operator onto the span

of the set:

{uj ,(z,c)s : j ∈ {1, . . . ,m}, s ∈ ∆∗}.

Need to prove that these projections, Πz
c , are projections and also

commute.
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The extended QC hierarchy: 2 =⇒ 1 (constructing
measurements)

Some helpful properties:

1. Vectors uj ,s and uj ,(z,c)s have the same inner product with
every vector in image of Πz

c :〈
ui ,(z,c)t , uj ,s

〉
=
〈
ui ,(z,c)t , uj ,(z,c)s

〉
.

2. From the above it follows that

Πz
cuj ,s = uj ,(z,c)s .
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The extended QC hierarchy: 2 =⇒ 1 (constructing
measurements)

Measurements Πz
c are projections (Πx

aΠy
b = 0).

I Measurements are orthogonal projections:〈
ui ,(z,c)t , uj ,(z,d)s

〉
= Mi ,j((z , c)t, (z , d)s)

= φi ,j(t
R(z , c)(z , d)s)

= 0.
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The extended QC hierarchy: 2 =⇒ 1 (constructing
measurements)

Measurements Πz
c obey

∑
a∈A Πx

a = 1 and
∑

b∈B Πy
b = 1.

I Measurements sum to 1:∑
a∈A

〈
ui ,s ,Π

x
auj ,t

〉
=
∑
a∈A

〈
ui ,s , uj ,(x ,a)t

〉
=
∑
a∈A

φi ,j((sR(x , a)t))

= φi ,j(s
Rt)

=
〈
ui ,s , uj ,t

〉
.
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The extended QC hierarchy: 2 =⇒ 1 (constructing
measurements)

Measurements Πz
c pairwise commute, [Πx

a ,Π
y
b] = 0.

I Measurements commute:〈
ui ,s ,Π

x
aΠy

buj ,t

〉
=
〈
ui ,(x ,a)s , uj ,(y ,b)t

〉
= φi ,j(s

R(x , a)(y , b)t)

= φi ,j(s
R(y , b)(x , a)t)

=
〈
ui ,(y ,b)s , uj ,(x ,a)t

〉
=
〈
ui ,s ,Π

y
bΠx

auj ,t

〉
.
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The extended QC hierarchy: 2 =⇒ 1 (constructing
measurements)

Strategy represented by state u and projective measurements {Πx
a}

and {Πy
b} yields a commuting measurement assemblage:

I Recall Πz
cuj ,s = uj ,(z,c)s :

Mi ,j((x , a), (y , b)) =
〈
ui ,(x ,a), uj ,(y ,b)

〉
=
〈

Πx
aΠy

b, uj ,εu
∗
i ,ε

〉
,

and therefore

K (a, b|x , y) = TrH
(
(1⊗ Πx

aΠy
b)uu∗

)
for all x , y , a, b.
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Supplementary material:
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Lower bounds for extended nonlocal games

Key idea: Fixing measurements on one system yields the optimal
measurements of the other system via an SDP.16

Iterative “see-saw” algorithm between two SDPs:

I SDP-1: Fix Bob’s measurements. Optimize over Alice’s
measurements.

I SDP-2: Fix Alice’s measurements (from SDP-1). Optimize
over Bob’s measurements.

I Repeat.

Not guaranteed to give optimal value, as the algorithm can get
stuck in a local minimum.

16
Liang, Doherty: “Bounds on Quantum Correlations in Bell Inequality Experiments”, (2007).
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Lower bounds for extended nonlocal games
Define {ρxa : x ∈ X , a ∈ A} ⊂ Pos(R⊗ B) as the residual states
acting on the referee and Bob’s systems and let

f =
∑

(x,y)∈X×Y
(a,b)∈A×B

π(x , y)
〈
Pa,b,x,y ⊗ By

b , ρ
x
a

〉
,

g =
∑

(x,y)∈X×Y
(a,b)∈A×B

π(x , y)
〈
By

b ,Φ
∗(ρxa)

〉
.

Lower bound: (SDP-1)

max: f

s.t.:
∑
a∈A

ρxa = τ,

ρxa ∈ Pos(R⊗ B),

τ ∈ D(R⊗ B).

Lower bound: (SDP-2)

max: g

s.t.:
∑
b∈B

By
b = 1B,

By
b ∈ Pos(B).

I Iterate between SDP-1 and SDP-2 until desired numerical precision is
reached.
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Motivation for monogamy-of-entanglement games

Monogamy-of-entanglement games were introduced to study
quantum cryptography.

The BB84 protocol is the first quantum cryptographic protocol and
is referred to as a quantum key distribution (QKD) scheme.

I Alice wants to send private key to Bob. Eve may eavesdrop
and compromise security. BB84 relies on fundamental
principles of quantum mechanics to determine if Eve
eavesdropped.

A BE

01010101 . . . 01010101

ψ, ψ, ψ, . . . , ψ, ψ,→
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Motivation for monogamy-of-entanglement games

Monogamy-of-entanglement games were introduced to study
quantum cryptography.
The BB84 protocol is the first quantum cryptographic protocol and
is referred to as a quantum key distribution (QKD) scheme.

I Alice wants to send private key to Bob. Eve may eavesdrop
and compromise security. BB84 relies on fundamental
principles of quantum mechanics to determine if Eve
eavesdropped.

A ?E

01010101 . . . 01010101

ψ, ψ, ψ, . . . , ψ, ψ,→

The authors showed that the above protocol is secure even if Bob’s
device is untrusted17.

17
[Tomamichel, Fehr, Kaniewski, Wehner, (2013)]
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The monogamy-of-entanglement property
Monogamy-of-entanglement games embody a fundamental
monogamous property exhibited by entangled states:

Consider σ = σU ⊗ σR ⊗ σV.

I If σU ⊗ σV are maximally entangled (that is):

σU =


1
n

. . .
1
n

 ,

then σR is completely unentangled with σU and σV.

Unentangled Entangled

σR

σU ⊗ σV

Similar to a “see-saw”: When σU ⊗ σV cannot be more entangled,
the state σR has no entanglement with σU ⊗ σV.
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Standard quantum strategies for
monogamy-of-entanglement games

A standard quantum strategy consists of a tripartite state
ρ ∈ D(U ⊗R⊗ V) and sets of local measurements for Alice and
Bob.

I The winning probability for a monogamy-of-entanglement
game using a standard quantum strategy is:∑

x∈X
a∈A

π(x)

〈
Ax
a ⊗ Pa,x ⊗ Bx

a , σ

〉
.

The standard quantum value of a monogamy-of-entanglement
game, G , denoted as ω∗(G ), is the maximal winning probability for
Alice and Bob over all standard quantum strategies.
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Unentangled strategies for monogamy-of-entanglement
games

In an unentangled strategy, the state σ prepared by Alice and Bob
is fully separable, that is

{σR
j : j ∈ ∆} ⊆ D(R), {σU

j : j ∈ ∆} ⊆ D(U), {σV
j : j ∈ ∆} ⊆ D(V),

such that

σ =
∑
j∈∆

p(j)σU
j ⊗ σR

j ⊗ σV
j .

Winning probability for an unentangled strategy is given by:

∑
x∈X
a∈A

π(x)

〈
Ax
a ⊗ Pa,x ⊗ Bx

a , σ

〉
,

where σ is separable.
The unentangled value, denoted as ω(G ), is the supremum of the
winning probability over all unentangled strategies.
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Unentangled value for monogamy-of-entanglement games

I For ω(G ), we want the best Alice and Bob can do.

I Since σ is separable (no quantum correlations) we can
imagine Alice and Bob optimizing functions f : X → A locally.

Alice and Bob only win when their outputs agree, and we assume
that the measurements of the referee are positive semidefinite
(from the definition for monogamy-of-entanglement games).

I For any monogamy-of-entanglement game, G , the
unentangled value is:

ω(G ) = max
f :X→A

∥∥∥∥∑
x∈X

π(x)Pf (x),x

∥∥∥∥,
where the maximum is over all functions f : X → A.
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Standard quantum and unentangled values of

monogamy-of-entanglement games
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A natural question for monogamy-of-entanglement games

I Question: For any monogamy-of-entanglement game, G , is it
true that the unentangled and standard quantum values
always coincide? In other words is it true that:

ω(G ) = ω∗(G )

for all monogamy-of-entanglement games G?

I Answer:
I For certain cases: Yes.
I In general: No.



19/19

A natural question for monogamy-of-entanglement games

I Question: For any monogamy-of-entanglement game, G , is it
true that the unentangled and standard quantum values
always coincide? In other words is it true that:

ω(G ) = ω∗(G )

for all monogamy-of-entanglement games G?

I Answer:
I For certain cases: Yes.
I In general: No.



19/19

ω(G ) = ω∗(G )
In general: No.
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Monogamy-of-entanglement games where ω(G ) 6= ω∗(G )
There exists a monogamy-of-entanglement game, G , with |X | = 4
and |A| = 3 such that

ω(G ) < ω∗(G ).

1. Question and answer sets:

X = {0, 1, 2, 3}, A = {0, 1, 2}.

2. Uniform probability for questions:

π(0) = π(1) = π(2) = π(3) =
1

4
.

3. Measurements defined by a mutually unbiased basis18:

{P0,x ,P1,x ,P2,x}.
18|ux(a)∗ux′(a)|2 = 1/|A| for Pa,x = ux(a)ux(a)∗,Pa,x′ = ux′(a)ux′(a)∗
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Monogamy-of-entanglement games where ω(G ) 6= ω∗(G )

I An exhaustive search over all unentangled strategies reveals
an optimal unentangled value:

ω(G ) =
3 +
√

5

8
≈ 0.6545.

I Alternatively, a computer search over standard quantum
strategies and a heuristic approximation for the upper bound
of ω∗(G ) reveals that:

2/3 ≥ ω∗(G ) ≥ 0.6609.

This ability to compute upper bounds for extended nonlocal games
is obtained from an adaptation of a technique known as the QC
hierarchy.
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ω(G ) = ω∗(G )
For certain classes: Yes.
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Monogamy games that obey ω(G ) = ω∗(G )

Theorem (Johnston, Mittal, R, Watrous)

For any monogamy-of-entanglement game, G , for which |X | = 2:

ω(G ) = ω∗(G ).
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Proof: Monogamy games that obey ω(G ) = ω∗(G )

Recall that for any monogamy-of-entanglement, G , the standard
quantum value may be written as

ω∗(G ) =

∥∥∥∥λ∑
a∈A

A0
a ⊗ Pa,0 ⊗ B0

a + (1− λ)
∑
b∈A

A1
b ⊗ Pb,1 ⊗ B1

b

∥∥∥∥

Since ‖P‖ ≤ ‖Q‖ if P ≤ Q for any P,Q ≥ 0:

ω∗(G ) ≤
∥∥∥∥λ∑

a∈A
A0
a ⊗ Pa,0 ⊗ 1V + (1− λ)

∑
b∈A

1U ⊗ Pb,1 ⊗ B1
b

∥∥∥∥
Since

∑
a∈A Ax

a =
∑

b∈A By
b = 1 the above quantity is equal to:

ω∗(G ) ≤
∥∥∥∥λ ∑

a,b∈A
A0
a ⊗ Pa,0 ⊗ B1

b + (1− λ)
∑
a,b∈A

A0
a ⊗ Pb,1 ⊗ B1

b

∥∥∥∥.
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Monogamy games that obey ω(G ) = ω∗(G )
(Previous slide):

ω∗(G ) ≤
∥∥∥∥λ ∑

a,b∈A
A0
a ⊗ Pa,0 ⊗ B1

b + (1− λ)
∑
a,b∈A

A0
a ⊗ Pb,1 ⊗ B1

b

∥∥∥∥.

Since 〈A0
a ⊗ B1

b ,A
0
a′ ⊗ B1

b′〉 = 0 for a 6= a′ and b 6= b′ and noting
that ∥∥∥∥∑

k

Ak ⊗ Πk

∥∥∥∥ = max
k
‖Ak ‖

for any projective measurement {Πk}, we have that∥∥∥∥ ∑
(a,b)∈A

A0
a ⊗ (λPa,0 + (1− λ)Pb,1)⊗ B1

b

∥∥∥∥ ≤ max
a,b∈A

∥∥∥∥λPa,0 + (1− λ)Pb,1

∥∥∥∥.
It follows by definition of the unentangled value that

ω(G ) = max
a,b∈A

∥∥∥∥λPa,0 + (1− λ)Pb,1

∥∥∥∥.
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Parallel repetition of monogamy-of-entanglement games
I Parallel repetition: Run a monogamy-of-entanglement game,

G , for n times in parallel, denoted as Gn.
I Strong parallel repetition: ω(Gn) = ω(G )n

R0,1

R0,r

R1,1

R1,r

A

B

σ

R1

Rr

X

Y

...

...

...

...

x1 a1

yr br

xr

b1

y1

ar

Question: Do all monogamy-of-entanglement games obey strong
parallel repetition?
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Parallel repetition of monogamy-of-entanglement games

I Recall:

ω(GBB84) = ω∗(GBB84) = cos2(π/8) ≈ 0.8536.

I GBB84 obeys strong parallel repetition19:

ω∗(Gn
BB84) = ω∗(GBB84)n =

(
cos2(π/8)

)n
.

19
Tomamichel, Fehr, Kaniewski, Wehner : “A Monogamy-of-Entanglement Game With Applications to

Device-Independent Quantum Cryptography”, (2013).
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Upper bounds on strong parallel repetition for monogamy
games

Theorem (Tomamichel, Fehr, Kaniewski, Wehner)

Let G = (π,P) be a monogamy game where π is uniform over X .
It holds that

ω∗(Gn) ≤
(

1

|X | +
|X | − 1

|X |
√

c(G )

)n

,

where c(G ) is the “maximal overlap of measurements” of the
referee

c(G ) = max
x ,y∈X
x 6=y

max
a,b∈A

∥∥∥∥√Pa,x

√
Pb,y

∥∥∥∥2

.
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Strong parallel repetition for certain monogamy games

Theorem (Johnston, Mittal, R, Watrous)

Let G = (π,P) be a monogamy game where |X | = 2, π is uniform
over X , and Pa,x are projective operators. It holds that

ω∗(Gn) =

(
1

2
+

1

2

√
c(G )

)n

.
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A key proposition and lemma

Lemma
Let Π0 and Π1 be nonzero projection operators on Cn. It holds that

‖Π0 + Π1‖ = 1 + ‖Π0Π1‖.

Proposition

Let G = (π,P) be a monogamy-of-entanglement game for which
X = {0, 1}, π is uniform over X , and Pa,x is a projection operator
for each x ∈ X and a ∈ A. It holds that

ω(G ) =
1

2
+

1

2
max
a,b∈A

∥∥∥∥Pa,0Pb,1

∥∥∥∥.
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Proof of proposition

Recall that the unentangled value for any monogamy game G is
written as

ω(G ) = max
f :X→A

∥∥∥∥∑
x∈X

π(x)Pf (x),x)

∥∥∥∥.
Assuming the lemma stating ‖Π0 + Π1‖ = 1 + ‖Π0Π1‖, we have

ω(G ) = max
a,b∈A

∥∥∥∥Pa,0 + Pb,1

2

∥∥∥∥ =
1

2
+

1

2
max
a,b∈A

∥∥∥∥Pa,0Pb,1

∥∥∥∥.
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Proof of theorem
From the proposition that

ω(G ) =
1

2
+

1

2

√
c(G ).

Since this is an unentangled strategy, we can assume that Alice
and Bob just play every instance optimally (since there is no
quantum correlation). It follows then that

ω(Gn) =

(
1

2
+

1

2

√
c(G )

)n

.

Recall that the theorem from [Tomamichel, Fehr, Kaniewski,
Wehner, (2013)] gives us

ω∗(Gn) ≤
(

1

2
+

1

2

√
c(G )

)n

,

which gives us that ω∗(Gn) ≤ ω(Gn). Finally,

ω∗(G n) ≥ ω(G n) ≥
(

1

2
+

1

2
max
a,b∈A

∥∥∥∥Pa,0Pb,1

∥∥∥∥)n

=

(
1

2
+

1

2

√
c(G )

)n

.
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ω(Gn) =

(
1

2
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1

2

√
c(G )

)n

.

Recall that the theorem from [Tomamichel, Fehr, Kaniewski,
Wehner, (2013)] gives us
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,

which gives us that ω∗(Gn) ≤ ω(Gn). Finally,
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Unentangled vs. standard quantum strategies for
monogamy-of-entanglement games

Inputs (|X |) Outputs (|A|) ω∗(G ) = ω(G ) ω∗(Gn) = ω∗(G )n ωns(G
n) = ωns(G )n

2 ≥ 1 yes yes20 no

3 ≥ 1 ? ? no

4 3 no ? no

Question: What about |X | = 3?

I Proof technique fails for |X | > 2.
I Computational search:

I Generate random monogamy-of-entanglement games where
|X | = 3 and |A| ≥ 2.

I 108 random games generates, no counterexamples found.

20
So long as the measurements used by the referee are projective and the probability distribution, π, from

which the questions are asked is uniform.
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Strategies of pure states and projective measurements

Claim: For any strategy, there is an equivalent strategy where the
state σ is pure and the sets of measurements for Alice and Bob are
projective.

1. Either Alice or Bob may purify their state.

2. Non-projective measurements may be simulated by projective
measurements as is done in Naimark’s theorem.
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Purifications of quantum states

Purification idea: Consider a state ρ ∈ D(X ) in register X. We
could, if we wish, view X as a subregister of some compound
register (X,Y), and think of ρ as being obtained by

ρ = TrY(uu∗)

for some pure state uu∗ of (X,Y).

Purification (formal): Let P ∈ Pos(X ) and let u ∈ X ⊗ Y. Then u
is a purification of P iff

TrY(uu∗) = P.
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Existence of purifications

We know that purifications must exist as a corollary to the
following theorem:

Theorem
Let X and Y be cEs and let P ∈ Pos(X ). There exists a vector
u ∈ X ⊗ Y s.t.

TrY(uu∗) = P

iff dim(Y) ≥ rank(P).

The corollary being:

Corollary

Let X and Y be cEs where dim(Y) ≥ dim(X ). For every
P ∈ Pos(X ), there exists a vector u ∈ X ⊗ Y s.t. TrY(uu∗) = P.
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Naimark’s theorem

Idea: Relationship between arbitrary measurements and projective
measurements. Any measurement may be viewed as a projective
measurement on a compound register that includes the original
register as a subregister.

Theorem
Let X be a cEs, let X be an alphabet, let Π : Σ→ Pos(X ) be a
measurement, and let Y = CΣ. There exists an isometery
A ∈ U(X ,X ⊗ Y) s.t.

Πa = A∗ (1X ⊗ Ea,a,)A

for every a ∈ Σ.
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Naimark’s theorem

Proof.
Let A ∈ L(X ,X ⊗ Y) where

A =
∑
a∈Σ

√
Πa ⊗ ea.

It can be checked that

A∗A =
∑
a∈Σ

Πa = 1X ,

which implies that A is an isometry.
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Corollary of Naimark

As a corollary to Naimark’s theorem, we have that

Corollary

Let X be a cEs, let Σ be an alphabet, and let
{Ma : a ∈ Σ} ⊂ Pos(X ) be a measurement. Take Y = CΣ and let
u ∈ Y be a unit vector. There exists a projective measurement
{Πa : a ∈ Σ} ⊂ Proj(X ⊗ Y) s.t.〈

Πa,X ⊗ uu∗
〉

=
〈
Ma,X

〉
for all X ∈ L(X ).
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Proof of corollary

Proof.
Let A ∈ U(X ,X ⊗ Y) be the isometry (that arises from Naimark’s
theorem). Let U ∈ U(X ⊗ Y ) be a unitary operator where

U(1X ⊗ u) = A

is satisfied, and define {Πa : a ∈ Σ} ⊂ Pos(X ⊗ Y) as

Πa = U∗ (1X ⊗ Ea,a)U

for each a ∈ Σ. It holds that:〈
Πa,X ⊗ uu∗

〉
=
〈

(1X ⊗ u∗)U∗(1X ⊗ Ea,aU(1X ⊗ u),X
〉

=
〈
A∗(1X ⊗ Ea,a)A,X

〉
=
〈
Ma,X

〉
,

for all a ∈ Σ.
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The extended QC hierarchy and dimensionality

Note: In the original QC hierarchy, there is no constraint on the
dimension of the state σ shared by Alice and Bob.

Note: The same is true for the extended QC hierarchy.

Note: If, however, one wishes to place bounds on the dimension of
σ, this was considered in21 w.r.t. the original QC hierarchy.

21
“Bounding the set of finite dimensional quantum correlations”: Navascues, Vertesi
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