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A set of pure quantum states is said to be antidistinguishable if upon sam-
pling one at random, there exists a measurement to perfectly determine some
state that was not sampled. We show that antidistinguishability of a set of
n pure states is equivalent to a property of its Gram matrix called (n − 1)-
incoherence, thus establishing a connection with quantum resource theories
that lets us apply a wide variety of new tools to antidistinguishability. As
a particular application of our result, we present an explicit formula (not in-
volving any semidefinite programming) that determines whether or not a set
with a circulant Gram matrix is antidistinguishable. We also show that if
all inner products are smaller than

√
(n− 2)/(2n− 2) then the set must be

antidistinguishable, and we show that this bound is tight when n ≤ 4. We
also give a simpler proof that if all the inner products are strictly larger than
(n− 2)/(n− 1), then the set cannot be antidistinguishable, and we show that
this bound is tight for all n.

1 Introduction
A collection of pure quantum states {|ψ0⟩, |ψ1⟩, . . . , |ψn−1⟩} is called antidistinguishable [1,
2, 3] if there exists a positive operator-valued measure {M0,M1, . . . ,Mn−1} such that

⟨ψi|Mi|ψi⟩ = 0, for all i ∈ {0, 1, . . . , n− 1}. (1)

The outcome of the measurement can be interpreted as ruling out one of the |ψi⟩ states. For
example, if outcome Mi occurs then we know for certain that |ψi⟩ was not measured. The
notion of antidistinguishability was introduced in [1] where it was referred to as post-Peierls
incompatibility. Antidistinguishability was later used as a key part in the proof of the PBR
theorem [4]; a result that has significance to the foundations of quantum mechanics, and
more specifically, significance to how one may interpret the reality of the quantum state.

Antidistinguishability is also referred to as unambiguous quantum state exclusion [5].
This setting of quantum state exclusion (sometimes referred to as error-free quantum state
elimination) has also found utility in the context of quantum communication [6, 7, 8] as well
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as quantum cryptography where it has been used to reduce the need for long-term quantum
memory for digital signature schemes [9] and to develop oblivious transfer protocols [10].

In contrast to quantum state exclusion is the more well-established field of quantum
state distinguishability that enjoys a rich history of study and has served to be foundational
to the field of quantum information. In the setting of quantum state distinguishability, the
goal is to determine what state one is given from a collection of quantum states. Whereas
the setting of quantum state exclusion has the goal of determining which state one is not
given. Quantum state exclusion, and by proxy, the notion of antidistinguishability, has not
been as thoroughly explored as quantum state distinguishability [11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22].

One way in which to further our understanding of the notion of antidistinguishability
is to determine under which conditions a collection of states is antidistinguishable. In [5],
a necessary condition for antidistinguishability was provided as a function of the fidelity
of the states in the collection. Similarly, in [3], the authors provided a sufficient condition
for antidistinguishability based on algebraic properties of the states. In a recent work [23],
optimal error exponents for antidistinguishability are given for the classical version of the
problem and they also provide bounds for the quantum case, leaving an exact expression
as an open problem. Antidistinguishability also appears in the study of quantum contex-
tuality [24, 25].

In [8], the authors conjectured that if a collection of d states each of dimension d
satisfied an inequality based on d, then the states are antidistinguishable. The validity of
this conjecture would imply the existence of an improved separation between a classical and
quantum communication task [8] as well as a strengthening of the PBR theorem [26, 27].
This conjecture is known to be true for d = 2 and for d = 3 [1] and also had some amount
of numerical evidence to suggest that it might be true for higher dimensions as well [8].
However, a counterexample to the conjecture for d = 4 was presented in [28]. While
this disproved the conjecture, the counterexample was not optimal and it was not clear
whether the conjecture could be reframed or salvaged. We provide an optimal disproof
of the conjecture for d = 4 in Example 6.1 as well as a correction to the conjecture in
Corollary 5.4. In particular, our correction is a trivial-to-compute sufficient condition for
antidistinguishability of a family of states based on their inner products.

In order to establish our results, we explore how antidistinguishability of a collection of
pure quantum states can be determined by their Gram matrix. In some sense, considering
the Gram matrix in this context is a natural thing to do and is inspired by the following
references on the quantum change point problem [29, 30]. In particular, we establish a
novel connection between antidistinguishability and quantum resource theories: we show
in Theorem 3.2 that a collection of pure states is antidistinguishable if and only if their
Gram matrix is “(n− 1)-incoherent” [31]. Since numerous properties of (n− 1)-incoherent
states are known [32, 33, 34, 35], this provides a wide array of new tools that can be
used to investigate antidistinguishability, and we use a result from [36] to establish our
correction to the conjecture. We also establish numerous other necessary and sufficient
conditions for antidistinguishability along the way that are of independent interest. Finally,
we note that if the Gram matrix is circulant, then we derive an exact characterization of
its antidistinguishability.

1.1 Structure of the paper
We start in Section 2 by presenting some mathematical background material that is re-
quired to present our results. In particular, we introduce the mathematical basics of
antidistinguishability in Section 2.1, Gram matrices in Section 2.2, circulant matrices in
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Section 2.3, and the concept of (n− 1)-incoherence in Section 2.4.
We then proceed in Section 3 to establish some of our more technical results. In

Section 3.1, we develop a new (somewhat simpler than previously known) semidefinite
program for checking antidistinguishability of a set of quantum states that uses the set’s
Gram matrix as input. We then proceed in Section 3.2 to show that antidistinguishability
of a set is equivalent to (n− 1)-incoherence of its Gram matrix.

The remaining sections of the paper are devoted to establishing bounds that can be used
to determine (non-)antidistinguishability of a set in ways that are simpler to evaluate than
semidefinite programs. In Section 4 we re-derive a trivial-to-compute necessary condition
for antidistinguishability via our framework. In Section 5 we develop several new trivial-to-
compute sufficient conditions for antidistinguishability, including a condition that is both
necessary and sufficient for sets of pure states that have a circulant Gram matrix. Finally,
we explore the question of how tight the conditions from Sections 4 and 5 are in Section 6.

2 Mathematical preliminaries
Throughout this paper, n and d are positive integers, and Cd is a finite-dimensional complex
Euclidean space with standard basis {|0⟩, |1⟩, . . . , |d − 1⟩}. We use the notation Pos(Cd),
Herm(Cd), and U(Cd) to represent the sets of positive semidefinite (PSD) operators, Hermi-
tian operators, and unitary operators acting on Cd, respectively. If A,B ∈ Herm(Cd) then
the notation A ⪯ B means that B − A ∈ Pos(Cd). We use I ∈ Pos(Cd) and O ∈ Pos(Cd)
for the identity and zero operators acting on Cd (or In and On if we want to emphasize
their size), respectively. We often represent linear operators as matrices in the usual way
via the standard basis but we index their entries starting at 0 (so, for example, we use
A0,0 = ⟨0|A|0⟩ to denote the (0, 0)-entry of a matrix A, which is the entry at A’s top-left
corner).

We provide a brief introduction to the mathematics of quantum information theory;
the interested reader should pursue any of a number of standard books [37, 38] for a more
thorough treatment of the subject. A pure quantum state is a column vector |ψ⟩ ∈ Cd

with Euclidean norm equal to 1. A positive operator-valued measure (POVM) is a set
{Mi : 0 ≤ i ≤ n− 1} ⊂ Pos(Cd) satisfying

n−1∑
i=0

Mi = I,

and we refer to an individual Mi as a measurement.

2.1 Antidistinguishability
For a POVM {M0, . . . ,Mn−1} ⊂ Pos(Cd) and set of pure states {|ψ0⟩, . . . , |ψn−1⟩} ⊂ Cd,
the probability of obtaining outcome 0 ≤ i ≤ n− 1, given the state |ψi⟩, can be calculated
by

p(i) = ⟨ψi|Mi|ψi⟩,

where ⟨ψi| is the conjugate transpose of |ψi⟩. The set of states is antidistinguishable if
there exists a POVM such that ⟨ψi|Mi|ψi⟩ = 0 for all 0 ≤ i ≤ n− 1.

Whether a set is antidistinguishable or not can be determined by a semidefinite program
(SDP) [5, 28]; for a general introduction to semidefinite programming in the context of
quantum information theory, see [38], for example. We note here that both the primal and
dual problems below share the same optimal objective function values thanks to strong
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duality and, moreover, both problems attain an optimal solution. In particular, a set is
antidistinguishable if and only if the optimal value of the following primal-dual pair of
SDPs is equal to 0:

Primal problem

minimize:
n−1∑
i=0

⟨ψi|Mi|ψi⟩

subject to:
n−1∑
i=0

Mi = I,

M0, . . . ,Mn−1 ∈ Pos(Cd)

Dual problem

maximize: Tr(Y )
subject to: Y ⪯ |ψ0⟩⟨ψ0|,

...
Y ⪯ |ψn−1⟩⟨ψn−1|,
Y ∈ Herm(Cd).

(2)

Slightly more generally, if we divide the optimal value of this SDP by n then we get
exactly the minimum probability of incorrectly performing state exclusion on the set (i.e.,
determining a state from the set that we were not given), when the states from the set are
provided as input with uniform probability. The set is antidistinguishable if and only if
this optimal probability of being incorrect is 0.

Example 2.1. Consider the collection {|ψ0⟩, |ψ1⟩, |ψ2⟩} ⊂ C2 of the “trine” states:

|ψ0⟩ = |0⟩, |ψ1⟩ = −1
2
(
|0⟩ +

√
3|1⟩

)
, |ψ2⟩ = −1

2
(
|0⟩ −

√
3|1⟩

)
.

This set is well-known to be antidistinguishable [39] but not distinguishable (since the states
are not orthogonal). Indeed, a measurement {M0,M1,M2} that antidistinguishes this set
comes from simply choosing each Mi to be (up to scaling) a rank-1 projection onto the
orthogonal complement |ψ⊥

i ⟩ of |ψi⟩. In particular,

M0 = 2
3 |ψ⊥

0 ⟩⟨ψ⊥
0 | = 2

3(I − |ψ0⟩⟨ψ0|),

M1 = 2
3 |ψ⊥

1 ⟩⟨ψ⊥
1 | = 2

3(I − |ψ1⟩⟨ψ1|),

M2 = 2
3 |ψ⊥

2 ⟩⟨ψ⊥
2 | = 2

3(I − |ψ2⟩⟨ψ2|),

as illustrated in Figure 1.
Indeed, it is straightforward to check that M0 + M1 + M2 = I, so this measurement

is feasible in the primal SDP (2), with orthogonality resulting in an objective value of
0. More generally, any collection of n pure states in C2 that have 1

n

∑n−1
i=0 |ψi⟩⟨ψi| =

1
2I (i.e., pure states that are “evenly distributed” on the surface of the Bloch sphere) is
antidistinguishable, since we can choose measurement operators that are orthogonal to each
of them.

2.2 Gram matrices
The Gram matrix of a set S = {|ψ0⟩, |ψ1⟩, . . . , |ψn−1⟩} ⊂ Cd is the matrix G ∈ Pos(Cn)
whose (i, j)-entry is Gi,j = ⟨ψi|ψj⟩. It is straightforward to see that if U ∈ U(Cd) then
US := {U |ψ0⟩, U |ψ1⟩, . . . , U |ψn−1⟩} has the same Gram matrix as S (the converse of this
statement is also true, but somewhat less obvious: if two sets of pure states S, S′ ⊂ Cd have
the same Gram matrix then there exists U ∈ U(Cd) such that S′ = US [40, Section 2.2.3]).
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|ψ⊥
0 ⟩

|ψ⊥
1 ⟩|ψ⊥

2 ⟩

|ψ0⟩

|ψ1⟩

|ψ2⟩

Figure 1: The trine states {|ψ0⟩, |ψ1⟩, |ψ2⟩} on the unit circle in R2, indicated in solid blue above,
are antidistinguishable as witnessed by the POVM M0 = 2

3 |ψ⊥
0 ⟩⟨ψ⊥

0 |, M1 = 2
3 |ψ⊥

1 ⟩⟨ψ⊥
1 |, M2 =

2
3 |ψ⊥

2 ⟩⟨ψ⊥
2 |, where {|ψ⊥

0 ⟩, |ψ⊥
1 ⟩, |ψ⊥

2 ⟩} are indicated in dashed red.

We can write the Gram matrix succinctly as G = ∑n−1
i,j=0⟨ψi|ψj⟩|i⟩⟨j| = W ∗W , where

W :=
n−1∑
k=0

|ψk⟩⟨k| (3)

is the d × n matrix with |ψk⟩ as its k-th column. A few properties of this W matrix are
convenient for our analysis. Firstly, we have W |k⟩ = |ψk⟩ for all 0 ≤ k ≤ n− 1. Secondly,
if the set S is linearly independent, then W has full column rank, in which case there exists
an n× d matrix V such that VW = In. In particular, this implies V |ψk⟩ = |k⟩.

2.3 Circulant matrices
An n× n matrix G is called circulant if there exist scalars g0, g1, . . ., gn−1 ∈ C so that

G =



g0 g1 g2 · · · gn−2 gn−1
gn−1 g0 g1 · · · gn−3 gn−2
gn−2 gn−1 g0 · · · gn−4 gn−3

...
...

...
. . .

...
...

g2 g3 g4 · · · g0 g1
g1 g2 g3 · · · gn−1 g0


.

There are two special matrices that are of particular importance when working with cir-
culant matrices. In particular, we define

P :=



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0


and F := 1√

n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)2

 (4)

(P is a cyclic permutation matrix and F is the Fourier matrix). The following characteri-
zation of circulant matrices is well-known (see [41], for example):
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Proposition 2.2. Let G be an n×n matrix, and let P and F be as in Equation (4). The
following are equivalent:

a) G is circulant.

b) G = PGP ∗.

c) G is diagonalized by the Fourier matrix: G = FDF ∗ for some diagonal matrix D.

Condition (c) of the above proposition is particularly useful for us, as it tells us that
we can construct a circulant Gram matrix with any (necessarily non-negative, adding up
to n) eigenvalues that we like: just place those eigenvalues along the diagonal of a diagonal
matrix D and then G = FDF ∗ will be a circulant Gram matrix with those eigenvalues.

If such a G is positive semidefinite (and thus Hermitian, so gj = gn−j for all 1 ≤
j ≤ n − 1) with g0 = 1 then it is the Gram matrix of some set of pure states S =
{|ψ0⟩, |ψ1⟩, . . . , |ψn−1⟩}. In this case, G being circulant corresponds to the inner products
of the members of S being invariant under cyclic permutations of the indices: ⟨ψi|ψj⟩ =
⟨ψi+1 (mod n)|ψj+1 (mod n)⟩ for all i, j. This motivates the following definition:

Definition 2.3. We say that a set of pure quantum states S = {|ψ0⟩, |ψ1⟩, . . . , |ψn−1⟩} is
circulant if it has either of the following equivalent properties:

a) The Gram matrix of S is circulant.

b) There exists a pure state |ψ⟩ and a unitary matrix U with the property that Un = I
such that S = {|ψ⟩, U |ψ⟩, U2|ψ⟩, . . . , Un−1|ψ⟩}.

c) ⟨ψi|ψj⟩ = ⟨ψi+1 (mod n)|ψj+1 (mod n)⟩ for all 0 ≤ i, j ≤ n− 1.

We note that sets of quantum states with property (b) above are sometimes called
symmetric [42] or geometrically uniform [43, 44]. The fact that that property is equivalent
to property (a) is proved in [45, Proposition 3.12], where it was furthermore shown that
|ψ⟩ can be chosen to belong to Rn and have non-negative entries, and U can be chosen to
be U = diag(1, ω, ω2, . . . , ωn−1), where ω = exp(2πi/n) is a primitive n-th root of unity.

2.4 (n − 1)-incoherence
One of our main results is the fact that antidistinguishability of a set of pure states is
equivalent to a certain notion from the theory of quantum resources:

Definition 2.4 ([34, 46]). Let k be a positive integer. Then X ∈ Pos(Cn) is called k-
incoherent if there exists a positive integer m, a set S = {|ψ0⟩, |ψ1⟩, . . . , |ψm−1⟩} ⊂ Cn

with the property that each |ψi⟩ has at most k non-zero entries, and real scalars c0, c1,
. . ., cm−1 ≥ 0 for which

X =
m−1∑
j=0

cj |ψj⟩⟨ψj |. (5)

Strictly speaking, the term “k-incoherent” is typically only applied to positive semidefi-
nite operators with trace 1. However, the trace does not substantially affect any properties
of k-incoherence, and it is more convenient for us to omit the trace restriction. In pure
mathematics, a k-incoherent operator is sometimes said to have factor width at most k
[47]. Informally, X is k-incoherent exactly when it can be written as a convex combination
of positive semidefinite matrices, each of which is identically zero outside of a single k × k
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principal submatrix. For example, a positive semidefinite matrix is 1-incoherent if and
only if it is diagonal, and every n× n PSD matrix is n-incoherent.

We are particularly interested in the case when k = n−1, so we restrict our attention to
(n− 1)-incoherence for the rest of the paper. When n = 2 the (n− 1)-incoherent operators
are (as mentioned earlier) exactly those that are PSD and diagonal. When n ≥ 3 this set of
matrices is somewhat more complicated, but membership in it can be determined efficiently
by semidefinite programming [31]. In particular, X is (n−1)-incoherent if and only if there
exist matrices F0, F1, . . . , Fn−1 ∈ Pos(Cn) for which G = ∑n−1

j=0 Fj and ⟨i|Fi|i⟩ = 0 for all i:
each Fi is equal to

∑
j cj |ψj⟩⟨ψj | where the sum ranges over the pure states |ψj⟩ that equal

0 in their i-th entry, and conversely each Fi with ⟨i|Fi|i⟩ = 0 has a spectral decomposition
made up of pure states whose i-th entry equals 0.

For example, decompositions like the one below can be found quickly by computer
software, thus certifying (n− 1)-incoherence:2 1 2

1 2 −1
2 −1 5

 =

0 0 0
0 1 −1
0 −1 1

+

1 0 2
0 0 0
2 0 4

+

1 1 0
1 1 0
0 0 0

 , (6)

where the 3 matrices on the right are what we called F0, F1, and F2 above. Computing a
spectral decomposition of these 3 matrices would then give a pure state (n−1)-incoherence
decomposition of the form in equation (5).

The set of all (n−1)-incoherent X ∈ Pos(Cn) is a closed convex cone inside the real vec-
tor space Herm(Cn), so it admits separating hyperplanes. That is, for every X̃ ∈ Pos(Cn)
which is not (n−1)-incoherent, there exists Y ∈ Herm(Cn) (a separating hyperplane) with
the property that Tr(XY ) ≥ 0 for all (n − 1)-incoherent X ∈ Pos(Cn) and Tr(X̃Y ) < 0.
The following definition describes these separating hyperplanes more explicitly:

Definition 2.5 ([48, 36]). We say that Y ∈ Herm(Cn) is (n−1)-locally PSD if it has any
of the following equivalent properties:

a) Tr(XY ) ≥ 0 for all (n− 1)-incoherent X ∈ Pos(Cn).

b) ⟨ψ|Y |ψ⟩ ≥ 0 for all pure states |ψ⟩ ∈ Cn with at most n− 1 non-zero entries.

c) Every (n− 1) × (n− 1) principal submatrix of Y is positive semidefinite.

In other words, the sets of (n−1)-incoherent operators and (n−1)-locally PSD operators
are dual cones of each other (see [49] for an introduction to dual cones). Given an operator
X ∈ Pos(Cn) that is not (n − 1)-incoherent, it is straightforward to use semidefinite
programming to find an (n − 1)-locally PSD operator Y for which Tr(XY ) < 0, thus
certifying non-(n− 1)-incoherence of X. For example, if

X =

1 1 1
1 1 1
1 1 1

 and Y =

 1 −1 −1
−1 1 −1
−1 −1 1


then it is straightforward to show that every (n−1)×(n−1) = 2×2 principal submatrix of
Y is PSD, so Y is (n−1)-locally PSD, but Tr(XY ) = −3 < 0, so X is not (n−1)-incoherent
(despite being PSD).

We close this section by showing that circulant matrices play particularly well with
(n−1)-incoherence and (n−1)-locally positive semidefiniteness. The following result shows
that when investigating (n − 1)-incoherence of circulant matrices, it suffices to consider
(n− 1)-locally PSD matrices that are also circulant:
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Lemma 2.6. Suppose X ∈ Herm(Cn) is circulant. Then we have that X is (n − 1)-
incoherent if and only if Tr(XY ) ≥ 0 for all n× n circulant (n− 1)-locally PSD matrices
Y .

Proof. The “only if” direction follows immediately from Definition 2.5: if X is (n − 1)-
incoherent then Tr(XY ) ≥ 0 for all (not necessarily circulant) (n−1)-locally PSD matrices
Y . We thus just need to prove the “if” direction.

To this end, consider the linear map PC : Herm(Cn) → Herm(Cn) defined by

PC(X) def= 1
n

n−1∑
j=0

P jX(P j)∗,

where P is the permutation matrix from Equation (4). It is straightforward to show that
PC(X) is circulant for all (not necessarily circulant) X ∈ Herm(Cn). In fact, PC is the
orthogonal projection onto the n-dimensional subspace of Herm(Cn) consisting of circulant
matrices. Furthermore, if X is (n − 1)-locally PSD then so is each P jX(P j)∗, so PC(X)
is (n− 1)-locally PSD too.

Now suppose that X is circulant (so PC(X) = X) and Tr(XY ) ≥ 0 for all circulant
(n − 1)-locally PSD matrices Y . Then for any (not necessarily circulant) (n − 1)-locally
PSD matrix Z we have

Tr(XZ) = Tr
(
PC(X)Z

)
= Tr

(
XPC(Z)

)
≥ 0,

since PC(Z) is circulant and (n−1)-locally PSD. It follows that X is (n−1)-incoherent.

3 A reduced semidefinite programming formulation and technical results
We now present our technical results and mathematical framework for exploring antidis-
tinguishability.

3.1 An SDP formulation in terms of the Gram matrix
Our first result in this section is an alternate version of the semidefinite program (2) that
is typically easier to work with (e.g., for finding explicit optimal solutions). This SDP uses
the Gram matrix G of the set of pure states S, rather than the states themselves:

Primal problem

minimize:
n−1∑
i=0

⟨i|Fi|i⟩

subject to:
n−1∑
i=0

Fi = G,

F0, . . . , Fn−1 ∈ Pos(Cn)

Dual problem

maximize: Tr(XG)
subject to: X ⪯ |0⟩⟨0|,

...
X ⪯ |n− 1⟩⟨n− 1|,
X ∈ Herm(Cn).

(7)

Before proving that this semidefinite program has the same optimal value as the
SDP (2), we note that the primal and dual problems have a zero duality gap. This can
be seen by the feasible primal solution (F0, F1, . . . , Fn−1) = ( 1

nG, . . . ,
1
nG) and the strictly

feasible dual solution X = −In. This also implies that the optimal value of this SDP is
attained in the primal problem (so we do not need to consider sequences of primal feasible
solutions converging onto our notion of antidistinguishability).
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Theorem 3.1. The semidefinite programs (2) and (7) have the same optimal value.

Proof. Let G be the Gram matrix of the set S ⊂ Cd, and define W as in Equation (3),
so that G = W ∗W . We prove this theorem by demonstrating a method of converting a
feasible point of one SDP into a feasible point of the other SDP with the same objective
function value.

If (M0,M1, . . . ,Mn−1) is a feasible point of the SDP (2) then define Fi = W ∗MiW for
all indices 0 ≤ i ≤ n− 1. Then (F0, F1, . . . , Fn−1) is a feasible point of the SDP (7) since
each Fi is positive semidefinite and

n−1∑
i=0

Fi =
n−1∑
i=0

W ∗MiW = W ∗
(

n−1∑
i=0

Mi

)
W = W ∗IW = W ∗W = G.

Furthermore, these feasible points give the same objective values in their respective SDPs
since we have W |i⟩ = |ψi⟩ and so

n−1∑
i=0

⟨i|Fi|i⟩ =
n−1∑
i=0

⟨i|W ∗MiW |i⟩ =
n−1∑
i=0

⟨ψi|Mi|ψi⟩.

Conversely, if (F0, F1, . . . , Fn−1) is a feasible point of the SDP (7) then let W † be the
(Moore–Penrose) pseudoinverse of W and define Mi = (W †)∗FiW

† + 1
n(I −WW †) for all

0 ≤ i ≤ n− 1. Then (M0,M1, . . . ,Mn−1) is a feasible point of the SDP (2) because:

• Each Mi is positive semidefinite. To see this note that WW † is the orthogonal
projection onto range(W ) = span(S), so I −WW † is positive semidefinite and thus
Mi is as well.

• If we recall the pseudoinverse property (W †)∗W ∗W = W then we see that
n−1∑
i=0

Mi =
n−1∑
i=0

(
(W †)∗FiW

† + 1
n

(
I −WW †))

= (W †)∗
(

n−1∑
i=0

Fi

)
W † +

(
I −WW †)

= (W †)∗GW † +
(
I −WW †)

= (W †)∗W ∗WW † +
(
I −WW †)

= WW † +
(
I −WW †) = I.

Furthermore, these feasible points give the same objective function values in their respec-
tive SDPs since

n−1∑
i=0

⟨ψi|Mi|ψi⟩ =
n−1∑
i=0

⟨ψi|
(

(W †)∗FiW
† + 1

n
(I −WW †)

)
|ψi⟩

=
n−1∑
i=0

⟨ψi|(W †)∗FiW
†|ψi⟩

=
n−1∑
i=0

⟨i|(W †W )∗Fi(W †W )|i⟩

=
n−1∑
i=0

⟨i|Fi|i⟩,
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where the final equality follows from the fact that W †W is the orthogonal projection onto
range(W ∗) ⊇ range(Fi), so (W †W )∗Fi(W †W ) = Fi.

Thanks to the above theorem, the dimension d that the set is embedded in is completely
irrelevant when considering the antidistinguishability of pure states; all that matters is how
many states there are and their inner products. We thus ignore the dimension d in the
remaining sections.

3.2 Antidistinguishability in terms of (n − 1)-incoherence
We now show that if we only care about antidistinguishability itself, and not the optimal
error probability when performing state exclusion, the SDP (7) can be simplified even
further, to the point that it coincides with (n− 1)-incoherence of the states’ Gram matrix:

Theorem 3.2. Let G be the Gram matrix of a set of n pure states. Then the set is
antidistinguishable if and only if G is (n− 1)-incoherent.

Proof. The primal version of the semidefinite program (7) says that the set of states is
antidistinguishable if and only if there exist F1, . . . , Fn ∈ Pos(Cn) with ∑n−1

i=0 Fi = G and
⟨i|Fi|i⟩ = 0 for all 0 ≤ i ≤ n − 1. Since ⟨i|Fi|i⟩ = 0 is equivalent to the i-th row and
column of Fi being equal to 0, this is equivalent to (n− 1)-incoherence of G.

Thanks to Theorem 3.2, we can now show that a set of pure states is antidistinguishable
by finding an (n − 1)-incoherent decomposition of their Gram matrix G (i.e., a way of
writing G = ∑

i Fi, where each Fi ∈ Pos(Cn) has at least one row and column equal to
0), and we can show that it is not antidistinguishable by finding an (n − 1)-locally PSD
matrix Y for which Tr(Y G) < 0. Both of these tasks can be carried out straightforwardly
by semidefinite programming. While we could already determine antidistinguishability via
semidefinite programming, this new SDP based on (n − 1)-incoherence is a bit simpler
and lets us derive several new explicit bounds on antidistinguishability in the upcoming
sections.

We illustrate how to make use of Theorem 3.2 with an example that determines exactly
which equiangular bases of Cn are antidistinguishable.

Example 3.3. Let 0 ≤ γ ≤ 1 be a real number and let S = {|ψ0⟩, |ψ1⟩, . . . , |ψn−1⟩} be
such that ⟨ψi|ψj⟩ = γ whenever i ̸= j. In other words, if 1 is the all-ones vector then the
Gram matrix of S is

G = I + γ(11T − I) =


1 γ γ · · · γ
γ 1 γ · · · γ
γ γ 1 · · · γ
...

...
... . . . ...

γ γ γ · · · 1

 .

We claim that S is antidistinguishable if and only if γ ≤ (n− 2)/(n− 1). To demonstrate
this claim, we show that G is (n − 1)-incoherent if and only if γ ≤ (n − 2)/(n − 1) and
then apply Theorem 3.2.

To verify that S is antidistinguishable when γ ≤ (n− 2)/(n− 1), define

Fi :=
( 1
n− 1 − γ

n− 2

) (
I − |i⟩⟨i|

)
+ γ

n− 2
(
1 − |i⟩

)(
1 − |i⟩

)T for all 0 ≤ i ≤ n− 1.
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It is clear that Fi ∈ Pos(Cn) for all i (since γ ≤ (n − 2)/(n − 1)), and direct calculation
shows that

n−1∑
i=0

Fi =
n−1∑
i=0

(( 1
n− 1 − γ

n− 2

) (
I − |i⟩⟨i|

)
+ γ

n− 2
(
1 − |i⟩

)(
1 − |i⟩

)T)

=
(

1 − γ(n− 1)
n− 2

)
I + γ

(
11T + 1

n− 2I
)

= G.

(8)

It follows that G is (n− 1)-incoherent, since each Fi has its i-th row and column equal to
0 (i.e., Equation (8) is a decomposition of G into a sum of (n− 1) × (n− 1) PSD blocks).

Now suppose that γ > (n− 2)/(n− 1). To verify that S is not antidistinguishable, let

X = (n− 2)I − (11T − I).

Since each (n−1)× (n−1) principal submatrix of X is diagonally dominant, X is (n−1)-
locally PSD. However,

Tr(XG) = Tr
((

(n− 2)I − (11T − I)
)(
I + γ(11T − I)

))
= n(n− 2) − n(n− 1)γ,

which is strictly negative (since γ > (n − 2)/(n − 1)). It follows that G is not (n − 1)-
incoherent.

The above calculation shows that the SDP (7) has its optimal value equal to 0 if and
only if we have γ ≤ (n−2)/(n−1). By simply running that SDP numerically (and dividing
the result by n), we can furthermore find the optimal (i.e., minimal) error probability when
performing state exclusion on this set of states, which is plotted in Figure 2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.25

0.50

0.75

1.00

n = 2
n = 3

n = 4
γ

SDP value

Figure 2: Plot of the relationship between γ and the optimal SDP value when performing state exclusion
on the set of states described by Example 3.3, for 2 ≤ n ≤ 10. This value equals 0 if and only if the
set is antidistinguishable, which happens exactly when γ ≤ (n − 2)/(n − 1). Dividing the SDP value
by n yields the optimal error probability in the state exclusion task, when all of the states are chosen
uniformly at random.
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4 Necessary conditions for antidistinguishability
While antidistinguishability of a set can be checked via semidefinite programming, it is
useful to have necessary and/or sufficient conditions for antidistinguishability that are
even easier to make use of (e.g., conditions that rely only on elementary linear algebra, or
on quantities that have a natural physical interpretation). In this section, we present a
pair of necessary conditions for antidistinguishability that involve just inequalities of the
inner products of the pure states. In particular, if these inner products are sufficiently
large then the set cannot be antidistinguishable:

Theorem 4.1. Let n ≥ 2 be an integer and let S = {|ψ0⟩, |ψ1⟩, . . . , |ψn−1⟩}. If

n−1∑
i ̸=j=0

∣∣⟨ψi|ψj⟩
∣∣ > n(n− 2) (9)

then S is not antidistinguishable.

We note that the above theorem also follows from the work in [5] which considered the
more general task of quantum state exclusion of mixed states. We give an alternative proof
using Theorem 3.2 in just a couple of lines, to demonstrate how simple antidistinguishability
of pure states is to work with via our (n− 1)-incoherence machinery.

Proof of Theorem 4.1. This result follows via an argument that is similar to the one used
in the latter half of Example 3.3. Define

Y = (n− 1)I − E,

where, for all 0 ≤ i, j ≤ n− 1 (even if i = j), the (i, j)-entry of E is the complex number
with modulus 1 and phase equal to that of ⟨ψi|ψj⟩. Since each (n− 1) × (n− 1) principal
submatrix of Y is diagonally dominant, Y is (n− 1)-locally PSD. However,

Tr(Y G) = Tr
((

(n− 1)I − E
)
G
)

= n(n− 2) −
n−1∑

i ̸=j=0

∣∣⟨ψi|ψj⟩
∣∣,

which is strictly negative whenever Inequality (9) holds. It follows that G is not (n− 1)-
incoherent, so Theorem 3.2 tells us that S is not antidistinguishable.

By noting that there are n(n−1) terms in the sum (9), the above theorem immediately
implies the following special case:

Corollary 4.2. Let n ≥ 2 be an integer and let S = {|ψ0⟩, |ψ1⟩, . . . , |ψn−1⟩}. If

∣∣⟨ψi|ψj⟩
∣∣ > n− 2

n− 1 for all 0 ≤ i ̸= j ≤ n− 1 (10)

then S is not antidistinguishable.

We note that Example 3.3 demonstrates that the inequalities described by Theo-
rem 4.1 and Corollary 4.2 are both tight: for all n, there is an antidistinguishable set
with

∣∣⟨ψi|ψj⟩
∣∣ = (n− 2)/(n− 1) and thus

∑n−1
i ̸=j=0

∣∣⟨ψi|ψj⟩
∣∣ = n(n− 2). In the n = 3 case,

the trine states from Example 2.1 also demonstrate tightness of these bounds, as they are
antidistinguishable with

∣∣⟨ψi|ψj⟩
∣∣ = (n− 2)/(n− 1) = 1/2 for all i ̸= j.

Accepted in Quantum 2024-00-00, click title to verify. Published under CC-BY 4.0. 12



5 Sufficient conditions for antidistinguishability
We now present some sufficient conditions for antidistinguishability that are simpler to use
than any of the semidefinite programs we have described. Much like the results of Sec-
tion 4 showed that if the states’ inner products are sufficiently large, then the set cannot
be antidistinguishable, in this section we show that if the inner products are sufficiently
small, then the set must be antidistinguishable. In particular, one of these sufficient con-
ditions (Corollary 5.4) can be thought of as a “corrected version” of the recently-disproved
conjecture [28] from [8]. For completeness, their conjecture was for an integer n ≥ 2 and
S = {|ψ0⟩, |ψ1⟩, . . . , |ψn−1⟩} if

∣∣⟨ψi|ψj⟩
∣∣ ≤ n− 2

n− 1 for all 0 ≤ i ̸= j ≤ n− 1 (11)

then S is antidistinguishable.
As our first step towards correcting this conjecture (in particular, placing a correct

quantity on the right-hand-side of Inequality (11)), we present a sufficient condition for
antidistinguishability in terms of the eigenvalues of the set’s Gram matrix. Remarkably,
this sufficient condition is also necessary for circulant sets:

Theorem 5.1. Let n ≥ 2 be an integer and let G ∈ Pos(Cn) be the Gram matrix of a set
S of n pure states, and let λ0 ≥ λ1 ≥ · · · ≥ λn−1 be the eigenvalues of G. If

√
λ0 ≤

n−1∑
j=1

√
λj (12)

then S is antidistinguishable. Furthermore, if G is circulant, then Inequality (12) is nec-
essary and sufficient for the antidistinguishability of S.

Proof. Define q := ∑n−1
j=1

√
λj and suppose that

√
λ0 ≤ q. Our goal is to show that S

is antidistinguishable. It was shown in [36, Theorem 8] that if there exists a real matrix
Λ ∈ Pos(Rn) such that

λ0 = −Λ0,0 −
n−1∑
i=1

(Λ0,i + Λi,0) and λj = Λj,j for 1 ≤ j ≤ n− 1 (13)

then G is (n− 1)-incoherent, so (by Theorem 3.2) S is antidistinguishable. It thus suffices
to find such a Λ.

To this end, define a vector v ∈ Rn by

v0 = −q −
√
q2 − λ0 and vj =

√
λj for 1 ≤ j ≤ n− 1

(the hypothesis
√
λ0 ≤ q was used here to ensure that v0 is real). It is then straightforward

to check that the positive semidefinite matrix Λ = vvT satisfies Equation (13), which
completes the proof that Inequality (12) implies antidistinguishability of S.

For the “furthermore” statement, suppose that G is circulant. Our goal is to show that
S being antidistinguishable is equivalent to Inequality (12) holding. To this end, recall
from Theorem 3.2 that S is antidistinguishable if and only if G is (n−1)-incoherent, which
(by Lemma 2.6) is equivalent to

Tr(GY ) ≥ 0 (14)
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for all circulant (n − 1)-locally PSD matrices Y . Well, Proposition 2.2(c) tells us that a
matrix Y is circulant if and only if Y = Fdiag(d)F ∗, where d is the vector of eigenvalues
of Y . Furthermore, it was shown in [36, Theorem 2] that a circulant matrix Y is (n− 1)-
locally PSD if and only if Sk(d) ≥ 0 for all 1 ≤ k ≤ n− 1, where Sk is the k-th elementary
symmetric polynomial

Sk(d) :=
∑

0≤j1<···<jk<n

dj1dj2 · · · djk
.

Since G is circulant, we can write G = Fdiag(λ)F ∗ for some vector λ = (λ0, . . . , λn−1)
whose entries are the eigenvalues of G. It follows that Inequality (14) is equivalent to

0 ≤ Tr(GY ) = Tr
(
(Fdiag(λ)F ∗)(Fdiag(d)F ∗)

)
= Tr

(
diag(λ)diag(d)

)
= λ · d.

In other words, S is antidistinguishable if and only if λ is in the dual cone of the set of
vectors d satisfying Sk(d) ≥ 0 for all 1 ≤ k ≤ n− 1. This dual cone was characterized in
[50, Proposition 4.2], and λ being in this dual cone implies the existence of Λ ∈ Pos(Rn)
satisfying Equation (13). Since Λ is positive semidefinite, so are all of its 2 × 2 principal
submatrices, so Λ0,0Λj,j ≥ Λ2

0,j for all 1 ≤ j ≤ n− 1. Substituting this into Equation (13)
gives

Λ0,0 = −λ0 − 2
n−1∑
j=1

Λ0,j ≤ −λ0 + 2
√

Λ0,0

n−1∑
j=1

√
λj .

This is a quadratic inequality in
√

Λ0,0, which (via the discriminant of the quadratic
formula) has a real solution if and only ifn−1∑

j=1

√
λj

2

− λ0 ≥ 0,

which implies
√
λ0 ≤

∑n−1
j=1

√
λj .

Remark 5.2. The proof of Theorem 5.1 shows something that was overlooked in [50, 36]:
the existence of Λ ∈ Pos(Rn) satisfying the constraints (13) can be determined without
semidefinite programming. Inequality (12) is both necessary and sufficient for the existence
of such a Λ.

Our first corollary of Theorem 5.1 gives a sufficient condition for antidistinguishability
in terms of the Frobenius norm ∥G∥F of G, which is slightly easier to compute than its
eigenvalues.

Corollary 5.3. Let n ≥ 2 be an integer and let G be the Gram matrix of a set S of n
pure states. If

∥G∥F ≤ n√
2

then S is antidistinguishable.

It is perhaps worth noting that for all Gram matrices G we have
√
n ≤ ∥G∥F ≤ n, with

the lower bound being saturated when the states in the set are mutually orthogonal and
the upper bound being saturated when the states in the set are all equal to each other.
Corollary 5.3 thus says that if the states in a set are “close enough” to being mutually
orthogonal, they must be antidistinguishable.
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Proof of Corollary 5.3. Define xj =
√
λj/n for all 0 ≤ j ≤ n − 1, so that the conditions

Tr(G) = n and ∥G∥F ≤ n/
√

2 are equivalent to
n−1∑
j=0

x2
j = 1 and

n−1∑
j=0

x4
j ≤ 1

2 , (15)

respectively. If we can show that these conditions imply
√
λ0 ≤

∑n−1
j=1

√
λj (i.e., x0 ≤∑n−1

j=1 xj) then Theorem 5.1 will imply the present corollary.
To this end, we note that the constraints (15) imply x2

0 = 1 −
∑n−1

j=1 x
2
j and thus1 −

n−1∑
j=1

x2
j

2

+
n−1∑
j=1

x4
j ≤ 1

2 .

Multiplying through by 2 and rearranging slightly shows that the above inequality is
equivalent to 1 − 2

n−1∑
j=1

x2
j

2

≤ 4
n−1∑
i,j=1
i>j

x2
ix

2
j .

Using the fact that 1 = ∑n−1
j=0 x

2
j on the left-hand-side, and then square-rooting both

sides (noting that the right-hand-side is non-negative, so the direction of the inequality is
preserved) then shows that

x2
0 −

n−1∑
j=1

x2
j ≤ 2

√√√√√√
n−1∑
i,j=1
i>j

x2
ix

2
j ≤ 2

n−1∑
i,j=1
i>j

xixj , (16)

where the second inequality follows since the 2-norm is at most the 1-norm. In particular,
the outermost inequality in (16) can be rearranged as

x2
0 ≤

n−1∑
j=1

x2
j + 2

n−1∑
i,j=1
i>j

xixj ,

which can be factored as

x2
0 ≤

n−1∑
j=1

xj

2

.

This implies x0 ≤
∑n−1

j=1 xj , as desired.

Our final sufficient condition for antidistinguishability arises simply by noting that if
each off-diagonal entry of a Gram matrix G has |gi,j | ≤

√
(n− 2)/(2n− 2), then ∥G∥F ≤

n/
√

2, so Corollary 5.3 tells us that the set is antidistinguishable. In other words, we have
the following corrected version of the conjecture from [8]:

Corollary 5.4. Let n ≥ 2 be an integer and let S = {|ψ0⟩, |ψ1⟩, . . . , |ψn−1⟩}. If

∣∣⟨ψi|ψj⟩
∣∣ ≤ 1√

2

√
n− 2
n− 1 for all 0 ≤ i ̸= j ≤ n− 1 (17)

then S is antidistinguishable.
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6 Tightness of these bounds
We already noted that the bounds of Section 4 are tight, as demonstrated by Example 3.3
(which is circulant). The bound of Theorem 5.1 is also tight, as shown by the fact that it
is both necessary and sufficient for circulant matrices. Corollary 5.3 can also be seen to
be tight via circulant matrices: if ε > 0 is small and G is a circulant Gram matrix with
eigenvalues λ0 = n/2 + ε, λ1 = n/2 − ε, and λj = 0 for j ≥ 2, then

n−1∑
j=1

√
λj =

√
n

2 − ε <

√
n

2 + ε =
√
λ0,

so any set of pure states with Gram matrix G must not be antidistinguishable, by Theo-
rem 5.1. However, in this case, we also have

∥G∥F =
√(

n

2 + ε

)2
+
(
n

2 − ε

)2
=

√
n2

2 + 2ε2 ≤ n√
2

+
√

2ε,

demonstrating that the quantity n/
√

2 in Corollary 5.3 cannot be increased at all.
The only question remaining is whether or not the bound established by Corollary 5.4

is also tight. It is trivially tight when n = 2 or n = 3 since it matches the corresponding
necessary condition provided by Corollary 4.2. The situation is less clear when n ≥ 4,
since when n = 4, for example, we have the following situation:

• If |⟨ψi|ψj⟩| > 2/3 ≈ 0.6667 for all i ̸= j then the set is not antidistinguishable
(Corollary 4.2).

• If |⟨ψi|ψj⟩| ≤ 2/3 for all i ̸= j then the set may be antidistinguishable (Example 3.3),
so Corollary 4.2 is tight.

• If |⟨ψi|ψj⟩| ≤ 1/
√

3 ≈ 0.5774 for all i ̸= j then the set is antidistinguishable (Corol-
lary 5.4).

• It is currently only known that the set may not be antidistinguishable when |⟨ψi|ψj⟩| >
0.6451 [28]. Our next example improves this bound to 1/

√
3, thus showing that

Corollary 5.4 is tight, at least when n = 4:

Example 6.1. Let c = 1/
√

3 and consider the matrix

G :=


1 c c c
c 1 ci (1 + ci)/2
c −ci 1 (1 − ci)/2
c (1 − ci)/2 (1 + ci)/2 1

 .
It is straightforward to check that G is positive semidefinite and is thus the Gram matrix
of some set S of n = 4 pure states. Since |gi,j | = 1/

√
3 for all i ̸= j, Corollary 5.4 tells

us that S is antidistinguishable.
Now let ε > 0 be small, let v = [1, (−

√
3 + i)/2, (−

√
3 − i)/2, 0]T and w = [0, 0, 0, 1]T ,

and define
Gε = 1

1 − 2ε
(
G+ ε(vv∗ + ww∗ − 3I)

)
.

A straightforward computation shows that Gε is positive semidefinite if 0 < ε < 1/10 and
its diagonal entries all equal 1, so it is the Gram matrix of some set Sε of n = 4 pure
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states. Furthermore, limε→0+ Gε = G, so the inner products of the members of Sε can be
made to have modulus as close to 1/

√
3 as we like by choosing ε > 0 sufficiently small.

We claim that Gε is not (n − 1) = 3-incoherent, so (by Theorem 3.2), Sε is not
antidistinguishable. To verify this claim, we need to find a 3-locally PSD matrix X for
which Tr(XGε) < 0. To this end, consider the matrices

Y =


2 −

√
3 − i −

√
3 + i 0

−
√

3 + i 2 1 −
√

3i 0
−

√
3 − i 1 +

√
3i 2 0

0 0 0 0

 and

Z =


0 1 +

√
3i 1 −

√
3i −2

1 −
√

3i 0 −
√

3 + i −
√

3 − i

1 +
√

3i −
√

3 − i 0 −
√

3 + i

−2 −
√

3 + i −
√

3 − i 2
√

3(1 + 5ε)

 .
The following claims are all straightforward (albeit somewhat tedious) to verify:

• Tr(Y Gε) = 0 for all 0 < ε < 1/2.

• Tr(ZGε) = −(20
√

3)ε2/(1 − 2ε) < 0 for all 0 < ε < 1/2.

• The matrix X = Y + δZ is 3-locally PSD when 0 < ε < 1/2 and 0 < δ ≤ 5
√

3ε/(1 +
5ε).

It follows that, for these choices of δ and ε, X is a 3-locally positive semidefinite matrix
with

Tr(XGε) = −(20
√

3)δε2/(1 − 2ε) < 0,

proving our claim.

We summarize the above example and related theorems in Figure 3.

n

⟨ψi|ψj⟩

2 3 4 5 6 7
0

0.25
0.5

0.75
1

Figure 3: How inner products between n pure states determine their antidistinguishability. If all inner
products are on or below the filled-in circles, then the states are antidistinguishable (Corollary 5.4),
and if all inner products are strictly above the hollow circles, then the states are not antidistinguishable
(Corollary 4.2). In between those circles, the states might be antidistinguishable (Example 3.3), and
when n = 4 at least they might also be not antidistinguishable (Example 6.1).

We still do not know whether or not Corollary 5.4 is tight when n ≥ 5. The difficulty
here is that the circulant matrices that we used to show that Corollary 5.3 is tight only have
the property that their off-diagonal entries all have absolute value equal to each other when
n ≤ 3. When n ≥ 4 we must explore non-circulant matrices like the one from Example 6.1,
and this seems much more difficult.
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Software. Companion software that implements the SDPs from Equation (2) in addition
to Examples 2.1, 3.3, and 6.1 can be found at the GitHub repository [51]. This repository
contains Python code that makes use of the toqito quantum information package [52] as
well as the PICOS package [53] which invokes the CVXOPT solver [54] for solving the
SDPs.
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