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Abstract

A set of pure quantum states is said to be antidistinguishable if upon sampling one at random,
there exists a measurement to perfectly determine some state that was not sampled. We show that
antidistinguishability of a set of n pure states is equivalent to a property of its Gram matrix called
(n — 1)-incoherence, thus establishing a connection with quantum resource theories that lets us apply
a wide variety of new tools to antidistinguishability. As a particular application of our result, we present
an explicit formula (not involving any semidefinite programming) that determines whether or not a set
with a circulant Gram matrix is antidistinguishable. We also show that if all inner products are smaller
than /(n —2)/(2n — 2) then the set must be antidistinguishable, and we show that this bound is
tight when n < 4. We also give a simpler proof that if all the inner products are strictly larger than
(n—2)/(n —1), then the set cannot be antidistinguishable, and we show that this bound is tight for
all n.

1 Introduction

A collection of pure quantum states {|o), |{1), ..., |Pn—1)} is called antidistinguishable [CFS02, Leil4,
HK 18] if there exists a positive operator-valued measure { Mo, My, ..., M,,_1} such that

($i|Mi|p;) =0, foralli € {0,1,...,n—1}. (1)

The outcome of the measurement can be interpreted as ruling out one of the |;) states. For example, if out-
come M; occurs then we know for certain that |¢;) was not measured. The notion of antidistinguishability
was introduced in [CFS02] where it was referred to as post-Peierls incompatibility. Antidistinguishability
was later used as a key part in the proof of the PBR theorem [PBR12]; a result that has significance to
the foundations of quantum mechanics, and more specifically, significance to how one may interpret the
reality of the quantum state.

Antidistinguishability is also referred to as unambiguous quantum state exclusion [BJOP14]. This set-
ting of quantum state exclusion (sometimes referred to as error-free quantum state elimination) has also
found utility in the context of quantum communication [PJO15, HK19, HB20] as well as quantum cryp-
tography where it has been used to reduce the need for long-term quantum memory for digital signature
schemes [DWA 14] and to develop oblivious transfer protocols [ASR21].
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In contrast to quantum state exclusion is the more well-established field of quantum state distinguisha-
bility that enjoys a rich history of study and has served to be foundational to the field of quantum informa-
tion. In the setting of quantum state distinguishability, the goal is to determine what state one is given from
a collection of quantum states. Whereas the setting of quantum state exclusion has the goal of determining
which state one is not given. Quantum state exclusion, and by proxy, the notion of antidistinguishabil-
ity, has not been as thoroughly explored as quantum state distinguishability [BDF 99, Che00, WSHV00,
GKR'01, VSPMO1, WHO02, HSSH03, Wat05, BC09, Ber10, QL10, BK15].

One way in which to further our understanding of the notion of antidistinguishability is to determine
under which conditions a collection of states is antidistinguishable. In [BJOP14], a necessary condition
for antidistinguishability was provided as a function of the fidelity of the states in the collection. Simi-
larly, in [HK18], the authors provided a sufficient condition for antidistinguishability based on algebraic
properties of the states. In a recent work [MNW23], optimal error exponents for antidistinguishability are
given for the classical version of the problem and they also provide bounds for the quantum case, leaving
an exact expression as an open problem.

In [HB20], the authors conjectured that if a collection of d states each of dimension d satisfied an
inequality based on d, then the states are antidistinguishable (see Conjecture 5.1 for the precise statement).
The validity of this conjecture would imply the existence of an improved separation between a classical and
quantum communication task [HB20] as well as a strengthening of the PBR theorem [MW 14a, MW 14b].
This conjecture is known to be true for d = 2 and for d = 3 [CFS02] and also had some amount of
numerical evidence to suggest that it might be true for higher dimensions as well [HB20]. However, a
counterexample to the conjecture for d = 4 was presented in [RS23]. While this disproved the conjecture,
the counterexample was not optimal and it was not clear whether the conjecture could be reframed or
salvaged. We provide an optimal disproof of the conjecture for d = 4 in Example 6.1 as well as a
correction to the conjecture in Corollary 5.5. In particular, our correction is a trivial-to-compute sufficient
condition for antidistinguishability of a family of states based on their inner products.

In order to establish our results, we explore how antidistinguishability of a collection of pure quantum
states can be determined by their Gram matrix. In some sense, considering the Gram matrix in this context
is a natural thing to do and is inspired by the following references on the quantum change point prob-
lem [SBCT16, SCMTI17]. In particular, we establish a novel connection between antidistinguishability
and quantum resource theories: we show in Theorem 3.2 that a collection of pure states is antidistinguish-
able if and only if their Gram matrix is “(n — 1)-incoherent” [RBC ™ 18]. Since numerous properties of
(n — 1)—incoherent states are known [LBT19, LSLL21, LM14a, ZGY21], this provides a wide array of
new tools that can be used to investigate antidistinguishability, and we use a result from [JMPP22] to estab-
lish our correction to the conjecture. We also establish numerous other necessary and sufficient conditions
for antidistinguishability along the way that are of independent interest. Finally, we note that if the Gram
matrix is circulant, then we derive an exact characterization of its antidistinguishability.

1.1 Structure of the paper

We start in Section 2 by presenting some mathematical background material that is required to present our
results. In particular, we introduce our notation and basics of quantum information theory in Section 2.1,
the mathematical basics of antidistinguishability in Section 2.2, Gram matrices in Section 2.3, circulant
matrices in Section 2.4, and the concept of (1 — 1)-incoherence in Section 2.5.

We then proceed in Section 3 to establish some of our more technical results. In Section 3.1, we
develop a new (somewhat simpler than previously known) semidefinite program for checking antidistin-
guishability of a set of quantum states that uses the set’s Gram matrix as input. We then proceed in
Section 3.2 to show that antidistinguishability of a set is equivalent to (n — 1)-incoherence of its Gram



matrix.

The remaining sections of the paper are devoted to establishing bounds that can be used to determine
(non-)antidistinguishability of a set in ways that are simpler to evaluate than semidefinite programs. In Sec-
tion 4 we re-derive a trivial-to-compute necessary condition for antidistinguishability via our framework.
In Section 5 we develop several new trivial-to-compute sufficient conditions for antidistinguishability, in-
cluding a condition that is both necessary and sufficient for sets of pure states that have a circulant Gram
matrix. Finally, we explore the question of how tight the conditions from Sections 4 and 5 are in Section 6.

2 Mathematical preliminaries

We now introduce our notation and the various mathematical tools that we make use of throughout the
paper.

2.1 Notation and basics of quantum information theory

Throughout this paper, 1 and d are positive integers, and C? is a finite-dimensional complex Euclidean
space with standard basis {|0), [1),...,|d — 1)}. We use the notation Pos(C%), Herm(C?), and U(C*)
to represent the sets of positive semidefinite (PSD) operators, Hermitian operators, and unitary operators
acting on C%, respectively. If A, B € Herm(C?) then the notation A < B means that B — A € Pos(C%).
We use I € Pos(C%) and O € Pos(C¥) for the identity and zero operators acting on C? (or I,, and O,, if
we want to emphasize their size), respectively. We often represent linear operators as matrices in the usual
way via the standard basis but we index their entries starting at 0 (so, for example, we use Apg = (0| A|0)
to denote the (0, 0)-entry of a matrix A, which is the entry at A’s top-left corner).

We provide only the briefest introduction to the mathematics of quantum information theory; the in-
terested reader should pursue any of a number of standard books [NC00, Wat18] for a more thorough
treatment of the subject. A pure quantum state is a column vector |¢) € C? with Euclidean norm equal to
1. A positive operator-valued measure (POVM) is aset {M; : 0 <i < n — 1} C Pos(C?) satisfying

n—1
Y M;i=1,
i=0

and we refer to an individual M; as a measurement.

2.2 Antidistinguishability

For a POVM {My, My,..., M, 1} C Pos(C%) and set of pure states {|4o), |1),...,|P,_1)} C C%,
the probability of obtaining outcome 0 < i < n — 1, given the state |¢;), can be calculated by

p(i) = (¢i|Mili),

where (¢;] is the conjugate transpose of |¢;). The set of states is antidistinguishable if there exists a
POVM such that (ip;| M;|i;) = 0forall0 <i <n—1.

Whether a set is antidistinguishable or not can be determined by a semidefinite program (SDP) [BJOP14,
RS23]; for a general introduction to semidefinite programming in the context of quantum information the-
ory, see [Watl8], for example. We note here that both the primal and dual problems below share the same
optimal objective function values thanks to strong duality and, moreover, both problems attain an opti-
mal solution. In particular, a set is antidistinguishable if and only if the optimal value of the following
primal-dual pair of SDPs is equal to O:



Primal problem
n—1

L Dual problem
minimize: Z (i Mi| ;) . —o PR
i—0 maximize: Tr(Y)
n_l bjectto: Y < |\ (y;| VO0<i<n-—1,
subject to: Z M, =1, subjecto = Wi (wil -
= Y € Herm(C?%).

M; € Pos(C?), V0<i<n-—1
2
Slightly more generally, if we divide the optimal value of this SDP by # then we get exactly the minimum
probability of incorrectly performing state exclusion on the set (i.e., determining a state from the set that

we were not given), when the states from the set are provided as input with uniform probability. The set is
antidistinguishabile if and only if this optimal probability of being incorrect is 0.

Example 2.1. Consider the collection {|o), |41), |[¥2)} C C? of the “trine” states:

Po) = 10), [92) = —2(10) +V3IL),  [ga) = 5 (10) ~ V3IL)).

This set is well-known to be antidistinguishable [Weil8] but not distinguishable (since the states are not
orthogonal). Indeed, a measurement { My, My, My} that antidistinguishes this set comes from simply
choosing each M; to be (up to scaling) a rank-1 projection onto the orthogonal complement \gbll) of |P;).
In particular,

2 2

Mo = 31y ) (o | = 5(I— o) (o),
2 2

My = Sy (wi] = 3= ) (),
2 2

Mo = 213 ) (x| = S (1 = [¢2) (2)),

as illustrated in Figure 1.

Indeed, it is straightforward to check that My + My + My = I, so this measurement is feasible in the
primal SDP (2), with orthogonality resulting in an objective value of 0. More generally, any collection of
n pure states in C? that have 1 YU |¢;) (;| = 11 (i.e., pure states that are “evenly distributed” on the
surface of the Bloch sphere) is antidistinguishable, since we can choose measurement operators that are
orthogonal to each of them.

2.3 Gram matrices

The Gram matrix of aset S = {|¢o), |¢1), ..., [¥y_1)} C C¥ is the matrix

1 (Wolpr)  (woly2) - (Wolpn—1)]
(1]o) 1 (Pil2) -+ (P1lpn-1)

G:= | (P2lp0)  (P2l¥h1) 1 o+ (2lPu-1) | € Pos(Ch). 3)
Goilgo) (B ln) (Bl o 1
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1)

Figure 1: The trine states {|to), |1), |$2)} on the unit circle in R?, indicated in solid blue above, are an-
tidistinguishable as witnessed by the POVM My = 2{¢g) (W5 |, M1 = 2|9 ) (1|, Mo = 3|93 ) (5],
where {|¢3), |1 ), |¢5-) } are indicated in dashed red.

It is straightforward to see that if U € U(C?) then US := {U|yo), U|y1),..., U, 1)} has the same
Gram matrix as S (the converse of this statement is also true, but somewhat less obvious: if two sets of
pure states S,S’ C C“ have the same Gram matrix then there exists U € U(CY) such that S’ = US
[Joh21, Section 2.2.3]).

We can write the Gram matrix succinctly as G = sz_:lo<¢i [$i) i) (j| = W*W, where

n—1
W= Y [iy) (k| 4)
k=0

is the d x n matrix with |ix) as its k-th column. A few properties of this W matrix are convenient
for our analysis. Firstly, we have W|k) = [¢y) forall 0 < k < n — 1. Secondly, if the set S is
linearly independent, then W has full column rank, in which case there exists an n X d matrix V such that
VW = I,,. In particular, this implies V|y) = |k).

2.4 Circulant matrices

An n x n matrix G is called circulant if there exist scalars go, g1, - . ., g§n—1 € C so that
I 80 81 g o En-2 gnfl_
&n-1 8o 81 - 8n-3 &n-2
G— 8n-2 8n-1 &0 - 8n-4 &n-3
82 8 84 -+ &80 81
L 81 82 & - 8n-1 &0 |

If such a G is positive semidefinite (and thus Hermitian, so g; = g,,—j forall1 <j <n —1) with go =1
then it is the Gram matrix of some set of pure states S = {|io), |¢1),. .., |Pn—1)}. In this case, G being
circulant corresponds to the inner products of the members of S being invariant under cyclic permutations
of the indices: (¢i|$;) = (¥it1 (mod n)|¥j+1 (mod n)) for all i, j. This motivates the following definition:



Definition 2.2. We say that a set of pure quantum states S = {|Po), |¥1),...,|Pu—1)} is circulant if it
has either of the following equivalent properties:

a) The Gram matrix of S is circulant.

b) There exists a pure state |) and a unitary matrix U such that S = {|), U|p), U?|y), ..., U )}

c) <¢1|¢]> = <¢i+1 (mod n)|lpj+l (mod n)>f0r all0 < l'] <n—-1

We note that sets of quantum states with property (b) above are sometimes called symmerric [DA12].
The fact that that property is equivalent to property (a) is proved in [DM16, Proposition 3.12], where it
was furthermore shown that |) can be chosen to belong to IR” and have non-negative entries, and U can
be chosen to be U = diag(1,w,w?,...,w" 1), where w = exp(27ti/n) is a primitive n-th root of unity.

There are two special matrices that are of particular importance when working with circulant matrices.
In particular, we define

™ 1 0 0 --- 0] 1 1 1 1 1 7
0010 ---0 1 w w? w? w"1
0001 ---0 1 |1 w? w? w® (w2(n=1)

P:= S and F := ﬁ 1 B Wb o W31 (S)
00O0O0O ---1 : : : : . :
1 0 00 --- 0 1 w1 @2l 3=l w(n—l)z_

(P is a cyclic permutation matrix and F is the Fourier matrix). The following characterization of circulant
matrices is well-known (see [Dav79], for example):

Proposition 2.3. Let G be an n x n matrix, and let P and F be as in Equation (5). The following are
equivalent:

a) G is circulant.
b) G = PGP*.
¢) G is diagonalized by the Fourier matrix: G = FDF* for some diagonal matrix D.

Condition (c) of the above proposition is particularly useful for us, as it tells us that we can construct
a circulant Gram matrix with any (necessarily non-negative, adding up to n) eigenvalues that we like: just
place those eigenvalues along the diagonal of a diagonal matrix D and then G = FDF* will be a circulant
Gram matrix with those eigenvalues.

2.5 (n—1)-incoherence

One of our main results is the fact that antidistinguishability of a set of pure states is equivalent to a certain
notion from the theory of quantum resources:

Definition 2.4 ([LM14b, SV15]). Let k be a positive integer. Then X € Pos(C") is called k-incoherent
if there exists a positive integer m, a set S = {|tpo), |1), ..., |[Ym—1)} € C" with the property that each
|(i) has at most k non-zero entries, and real scalars cy, c1, ..., ¢y—1 > 0 for which

m—1
X =Y cilpi) (il
i=0
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Strictly speaking, the term “k-incoherent” is typically only applied to positive semidefinite operators
with trace 1. However, the trace does not substantially affect any properties of k-incoherence, and it is more
convenient for us to omit the trace restriction. In pure mathematics, a k-incoherent operator is sometimes
said to have factor width at most k [BCPTO05]. Informally, X is k-incoherent exactly when it can be written
as a convex combination of positive semidefinite matrices, each of which is identically zero outside of a
single k x k principal submatrix. For example, a positive semidefinite matrix is 1-incoherent if and only if
it is diagonal, and every n X n PSD matrix is n-incoherent.

We are particularly interested in the case when k = n — 1, so we restrict our attention to (n — 1)-
incoherence for the rest of the paper. When n = 2 the (n — 1)-incoherent operators are (as mentioned
earlier) exactly those that are PSD and diagonal. When n > 3 this set of matrices is somewhat more com-
plicated, but membership in it can be determined efficiently by semidefinite programming [RBC " 18]. For
example, decompositions like the one below can be found quickly by computer software, thus certifying
(n — 1)-incoherence:

2 1 2 11
1 2 —-1|=1]11
2 -1 5 00

0
0
0

1 0 2 0 0 O
+10 0 Of+]0 1 -1

2 0 4 0 -1 1

The set of all (n — 1)-incoherent X € Pos(C") is a closed convex cone inside the real vector space
Herm(C"), so it admits separating hyperplanes. That is, for every X € Pos(C") which is not (n — 1)-
incoherent, there exists Y € Herm(C") (a separating hyperplane) with the property that Tr(XY) > 0 for
all (n — 1)-incoherent X € Pos(C") and Tr(XY) < 0. The following theorem describes these separating
hyperplanes more explicitly:

Definition 2.5 ([BDSS22, IMPP22]). We say that Y € Herm(C") is (n — 1)-locally PSD if it has any of
the following equivalent properties:

a) Tr(XY) > 0 forall (n — 1)-incoherent X € Pos(C").
b) (|Y|yp) > 0 for all pure states |p) € C" with at most n — 1 non-zero entries.
¢) Every (n — 1) x (n — 1) principal submatrix of Y is positive semidefinite.

In other words, the sets of (7 — 1)-incoherent operators and (7 — 1)-locally PSD operators are dual
cones of each other (see [BV04] for an introduction to dual cones). Given an operator X € Pos(C") that
is not (n — 1)-incoherent, it is straightforward to use semidefinite programming to find an (1 — 1)-locally
PSD operator Y for which Tr(XY') < 0, thus certifying non-(n — 1)-incoherence of X. For example, if

1 1 -1 -1
1 and Y=1|-1 1 -1
1

1
X=]1
1 -1 -1 1

—_

then it is straightforward to show that every (n — 1) x (n — 1) = 2 X 2 principal submatrix of Y is PSD,
so Yis (n — 1)-locally PSD, but Tr(XY) = —3 < 0, so X is not (n — 1)-incoherent (despite being PSD).

We close this section by showing that circulant matrices play particularly well with (1 — 1)-incoherence
and (n — 1)-locally positive semidefiniteness. The following result shows that when investigating (17 — 1)-
incoherence of circulant matrices, it suffices to consider (n — 1)-locally PSD matrices that are also circu-
lant:

Lemma 2.6. Suppose X € Herm(C") is circulant. Then we have that X is (n — 1)-incoherent if and
only if Tr(XY) > 0 for all n x n circulant (n — 1)-locally PSD matrices Y.



Proof. The “only if” direction follows immediately from Definition 2.5: if X is (n — 1)-incoherent then
Tr(XY') > 0 for all (not necessarily circulant) (n — 1)-locally PSD matrices Y. We thus just need to prove
the “if”” direction.

To this end, consider the linear map Pc : Herm(C") — Herm(C") defined by

1 n—-1 )
Po(X) = . Y PIX(Pl),
j=0

where P is the permutation matrix from Equation (5). It is straightforward to show that Pc(X) is circulant
for all (not necessarily circulant) X € Herm(C"). In fact, Pc is the orthogonal projection onto the 7-
dimensional subspace of Herm (C") consisting of circulant matrices. Furthermore, if X is (1 — 1)-locally
PSD then so is each P/ X (P/)*, so Pc(X) is (n — 1)-locally PSD too.

Now suppose that X is circulant (so Pc(X) = X) and Tr(XY) > 0 for all circulant (1 — 1)-locally
PSD matrices Y. Then for any (not necessarily circulant) (n — 1)-locally PSD matrix Z we have

Tr(XZ) = Tr (Pe(X)Z) = Tr (XPc(Z)) >0,

since Pc(Z) is circulant and (1 — 1)-locally PSD. It follows that X is (n — 1)-incoherent. O

3 A reduced semidefinite programming formulation and technical results

We now present our technical results and mathematical framework for exploring antidistinguishability.

3.1 An SDP formulation in terms of the Gram matrix

Our first result in this section is an alternate version of the semidefinite program (2) that is typically easier
to work with (e.g., for finding explicit optimal solutions). This SDP uses the Gram matrix G of the set of
pure states S, rather than the states themselves:

Primal problem Dual problem
n—1 ..
minimize: Z (|E]i) maximize: Tr(XG)
i=0 subjectto: X <X [i)(i|, V0<i<n-—1,

n—1 n

X eH c").

subject to: Z F =G, € Herm(C")
i=0

F € Pos(C"), V0<i<n-—1
(6)

Before proving that this semidefinite program has the same optimal value as the SDP (2), we note that
the primal and dual problems have a zero duality gap. This can be seen by the feasible primal solution
(Fo,F1,...,Fi1) = (%G, e, %G) and the strictly feasible dual solution X = —I,,. This also implies that
the optimal value of this SDP is attained in the primal problem (so we do not need to consider sequences

of primal feasible solutions converging onto our notion of antidistinguishability).

Theorem 3.1. The semidefinite programs (2) and (6) have the same optimal value.



Proof. Let G be the Gram matrix of the set S C C?, and define W as in Equation (4), so that G = W*W.
We prove this theorem by demonstrating a method of converting a feasible point of one SDP into a feasible
point of the other SDP with the same objective function value.

If (Mo, My, ..., M,_1) is a feasible point of the SDP (2) then define F; = W*M;W for all indices
0 <i<mn-—1. Then (Fy,F,...,F,_1) is a feasible point of the SDP (6) since each F; is positive
semidefinite and

n—1 n—1
ZF—ZW*MW W*(ZMi)W:W*IW:W*W:G.
i=0 i=0

Furthermore, these feasible points give the same objective values in their respective SDPs since we have
WIi) = |¢;) and so

n-1 n—1 n—1
Y (ilEl) = Y W MWL) = Y (i M),
20 i=0 i=0

Conversely, if (Fo, Fy, . .., F,—1) is a feasible point of the SDP (6) then let W be the (Moore—Penrose)
pseudoinverse of W and define M; = (WH)*EW' + 1(I — WW') forall 0 < i < n—1. Then
(Mo, My, ..., M, _1) is a feasible point of the SDP (2) because:

 Each M,; is positive semidefinite. To see this note that WWT is the orthogonal projection onto
range(W) = span(S), so [ — WWT is positive semidefinite and thus M; is as well.

« If we recall the pseudoinverse property (W')*W*W = W then we see that
1
) FEW? I-WWw*
To= & (vt - ww))
n—1
=W [ L FE )W+ (1-ww')

i=0
= (WH)*GW' + (I - WW")
= (W W WW* + (I - W)
=WW'+ (I-Www') =1.

Furthermore, these feasible points give the same objective function values in their respective SDPs since

n—1 n—1 1
L (M) = T 9] (V) B L= W) ) )
- "Zé<zpz|<w*> EW![y)
Y W W) R W) )
i=0
n—1

(i[Eili),

T
=

where the final equality follows from WTW being the orthogonal projection onto range(W*) D range(F;),
so (WW)*E(WW) = F.. O



Thanks to the above theorem, the dimension d that the set is embedded in is completely irrelevant
when considering the antidistinguishability of pure states; all that matters is how many states there are and
their inner products. We thus ignore the dimension d in the remaining sections.

3.2 Antidistinguishability in terms of (n — 1)-incoherence

We now show that if we only care about antidistinguishability itself, and not the optimal error probability
when performing state exclusion, the SDP (6) can be simplified even further, to the point that it coincides
with (n — 1)-incoherence of the states’ Gram matrix:

Theorem 3.2. Let G be the Gram matrix of a set of n pure states. Then the set is antidistinguishable if
and only if G is (n — 1)-incoherent.

Proof. The primal version of the semidefinite program (6) says that the set of states is antidistinguishable
if and only if there exist Fy, ..., F, € Pos(C") with Y/ F; = G and (i|F;|i) = 0 forall 0 <i < n — 1.

Since (i|F;|i) = 0 is equivalent to the i-th row and column of F; being equal to 0, this is equivalent to
(n — 1)-incoherence of G. O

Thanks to Theorem 3.2, we can now show that a set of pure states is antidistinguishable by finding
an (n — 1)-incoherent decomposition of their Gram matrix G (i.e., a way of writing G = }; F;, where
each F; € Pos(C") has at least one row and column equal to 0), and we can show that it is not antidistin-
guishable by finding an (1 — 1)-locally PSD matrix Y for which Tr(YG) < 0. Both of these tasks can be
carried out straightforwardly by semidefinite programming. While we could already determine antidistin-
guishability via semidefinite programming, this new SDP based on (7 — 1)-incoherence is a bit simpler
and lets us derive several new explicit bounds on antidistinguishability in the upcoming sections.

We illustrate how to make use of Theorem 3.2 with an example that determines exactly which equian-
gular bases of C" are antidistinguishable.

Example 3.3. Let 0 < v < 1 be a real number and let S = {|¢o), |¢1),...,|¢u_1)} be such that
(Qilg;) = v whenever i # j. In other words, if 1 is the all-ones vector then the Gram matrix of S is

Iy vy -~ 7y
G=I+qym"-D=1|r v 1 - 7
y v v e 1

We claim that S is antidistinguishable if and only if v < (n —2)/(n — 1). To demonstrate this claim, we
show that G is (n — 1)-incoherent if and only if v < (n — 2)/(n — 1) and then apply Theorem 3.2.
To verify that S is antidistinguishable when v < (n —2)/(n — 1), define

= () )+ 5 0= @ 1) foran 0<i<n-1

It is clear that F; € Pos(C") for all i (since v < (n —2)/(n — 1)), and direct calculation shows that
L 1 1 0% N 0 . T
yE=3 (2 ts) (-0 + 250 a- 1))

(2= r, 1 (7
_<1 p— >I—|—'y<11 +n_21>
G
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It follows that G is (n — 1)-incoherent, since each F; has its i-th row and column equal to 0 (i.e., Equa-
tion (7) is a decomposition of G into a sum of (n — 1) x (n — 1) PSD blocks).
Now suppose that iy > (n —2)/(n — 1). To verify that S is not antidistinguishable, let

X=(n-2)I- 11" -1I).

Since each (n — 1) x (n — 1) principal submatrix of X is diagonally dominant, X is (n — 1)-locally PSD.
However,

Tr(XG) = Tr (((n —2)1— (11" = 1)) (I + y(117 — 1)))
=nn-2)—nn-1),

which is strictly negative (since v > (n —2)/(n — 1)). It follows that G is not (n — 1)-incoherent.

The above calculation shows that the SDP (6) has its optimal value equal to O if and only if we have
v < (n—2)/(n—1). By simply running that SDP numerically (and dividing the result by n), we can
Sfurthermore find the optimal (i.e., minimal) error probability when performing state exclusion on this set
of states, which is plotted in Figure 2.

error probability

1.00 —+
0.75 —
0.50 —

0.25

Figure 2: Plot of the relationship between 7y and the optimal error probability when performing state
exclusion on the set of states described by Example 3.3, for 2 < n < 10. This error probability equals O
if and only if the set is antidistinguishable, which happens exactly when v < (n —2)/(n —1).

4 Necessary conditions for antidistinguishability

While antidistinguishability of a set can be checked via semidefinite programming, it is useful to have
necessary and/or sufficient conditions for antidistinguishability that are even easier to make use of (e.g.,
conditions that rely only on elementary linear algebra, or on quantities that have a natural physical inter-
pretation). In this section, we present a pair of necessary conditions for antidistinguishability that involve
just inequalities of the inner products of the pure states. In particular, if these inner products are sufficiently
large then the set cannot be antidistinguishable:
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Theorem 4.1. Let n > 2 be an integer and let S = {|¢o), |¥1), ..., |¢Yn-1)}. If

n—1
Y. [wilyy)| > n(n—2) (8)

i#j=0
then S is not antidistinguishable.

We note that the above theorem was originally proved in [BJOP14], but the proof is rather long and
technical. We re-prove it here via Theorem 3.2 in just a couple of lines, to demonstrate how simple
antidistinguishability is to work with via our (n — 1)-incoherence machinery:

Proof of Theorem 4.1. This result follows via an argument that is similar to the one used in the latter half
of Example 3.3. Define
Y=(n—-1)I—-E,

where, forall 0 < i,j < n —1 (even if i = j), the (i, j)-entry of E is the complex number with modulus
1 and phase equal to that of (¢;|1;). Since each (n — 1) x (n — 1) principal submatrix of Y is diagonally
dominant, Y is (n — 1)-locally PSD. However,

n—1
Te(YG) =T (((n— I E)G) =n(n—2)~ Y |(pil;)

i#j=0

4

which is strictly negative whenever Inequality (8) holds. It follows that G is not (1 — 1)-incoherent, so
Theorem 3.2 tells us that S is not antidistinguishable. O

By noting that there are n(n — 1) terms in the sum (8), the above theorem immediately implies the
following special case:

Corollary 4.2. Let n > 2 be an integer and let S = {|o), |¥1), ..., |[Yu_1) }. If

‘<¢i|¢j>‘>% forall 0<i#j<n-—1 )

then S is not antidistinguishable.

We note that Example 3.3 demonstrates that the inequalities described by Theorem 4.1 and Corol-
lary 4.2 are both tight: for all n, there is an antidistinguishable set with |(y;|i;)| = (n —2)/(n —1) and

thus ?;1.1:0 |(ilip;)| = n(n —2). In the n = 3 case, the trine states from Example 2.1 also demonstrate

tightness of these bounds, as they are antidistinguishable with |(y;|i;)| = (n —2)/(n —1) = 1/2 for
all i # j.

5 Sufficient conditions for antidistinguishability

We now present some sufficient conditions for antidistinguishability that are simpler to make use of than
any of the semidefinite programs that we have described. Much like the results of Section 4 showed
that if the states’ inner products are sufficiently large then the set cannot be antidistinguishable, in this
section we show that if the inner products are sufficiently small then the set must be antidistinguishable.
In particular, one of these sufficient conditions (Corollary 5.5) can be thought of as a “corrected version”
of the recently-disproved conjecture from [HB20]. For completeness, we state this conjecture here:

12



Conjecture 5.1 ((HB20]). Let n > 2 be an integer and let S = {|¢o), |¥1), ..., |¥n-1)}. If

n

—2
[(ilyp)| < —— forall 0<i#j<n-—1 (10)

then S is antidistinguishable.

As our first step towards correcting this conjecture (in particular, placing a correct quantity on the
right-hand-side of Inequality (10)), we present a sufficient condition for antidistinguishability in terms
of the eigenvalues of the set’s Gram matrix. Remarkably, this sufficient condition is also necessary for
circulant sets:

Theorem 5.2. Let n > 2 be an integer and let G € Pos(C") be the Gram matrix of a set S of n pure
states, and let A\g > A > -+ > Ay, _1 be the eigenvalues of G. If

n—1
Vi< ¥\ /A (1)
j=1

then S is antidistinguishable. Furthermore, if G is circulant then Inequality (11) is both necessary and
sufficient for the antidistinguishability of S.
Proof. Define q := ]7-‘:_11 \/A; and suppose that \/Ag < g. Our goal is to show that S is antidistin-
guishable. It was shown in [JMPP22, Theorem 8] that if there exists a real matrix A € Pos(IR") such
that

n—1

Ao =—Noo— ), (Agi+Aip) and Aj=Aj; for 1<j<n—1 (12)
i=1

then G is (n — 1)-incoherent, so (by Theorem 3.2) S is antidistinguishable. It thus suffices to find such a
A.
To this end, define a vector v € IR" by

Uo:_q_\/m and Uj:\/)Tj for 1<j<n-—1

(the hypothesis v/Ag < g was used here to ensure that vy is real). It is then straightforward to check
that the positive semidefinite matrix A = vv! satisfies Equation (12), which completes the proof that
Inequality (11) implies antidistinguishability of S.

For the “furthermore” statement, suppose that G is circulant. Our goal is to show that S being an-
tidistinguishable is equivalent to Inequality (11) holding. To this end, recall from Theorem 3.2 that S is
antidistinguishable if and only if G is (n — 1)-incoherent, which (by Lemma 2.6) is equivalent to

Tr(GY) > 0 (13)

for all circulant (n — 1)-locally PSD matrices Y. Well, Proposition 2.3(c) tells us that a matrix Y is
circulant if and only if Y = Fdiag(d)F*, where d is the vector of eigenvalues of Y. Furthermore, it was
shown in [JMPP22, Theorem 2] that a circulant matrix Y is (1 — 1)-locally PSD if and only if Sx(d) > 0
forall 1 <k < n —1, where S is the k-th elementary symmetric polynomial

0<ji <<js<n
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Since G is circulant, we can write G = Fdiag(A)F* for some vector A = (Ag, A1,...,A,_1) whose
entries are the eigenvalues of G. It follows that Inequality (13) is equivalent to

0 < Tr(GY) = Tr ((Fdiag(A)F*)(Fdiag(d)F*)) = Tr (diag(A)diag(d)) = A - d.

In other words, S is antidistinguishable if and only if A is in the dual cone of the set of vectors d satisfying
Sk(d) > 0forall 1 < k < n — 1. This dual cone was characterized in [Zin08, Proposition 4.2], and A
being in this dual cone implies the existence of A € Pos(IR") satisfying Equation (12). Since A is positive
semidefinite, so are all of its 2 X 2 principal submatrices, so AO,OA]',]' > A%,j foralll <j <n-1
Substituting this into Equation (12) gives

n—1 n—1
Aop=—A—2) Agj < —Ao+2y/Aoo ), \/)T]
=1 =1

This is a quadratic inequality in / /g, which (via the discriminant of the quadratic formula) has a real

solution if and only if
n—1 2
Z VAl —A =0,
j=1

which implies /Ay < }:11 VA O

Remark 5.3. The proof of Theorem 5.2 shows something that was overlooked in [Zin0O8, JMPP22]: the
existence of A € Pos(R") satisfying the constraints (12) can be determined without semidefinite pro-
gramming. Inequality (11) is both necessary and sufficient for the existence of such a /.

Our first corollary of Theorem 5.2 gives a sufficient condition for antidistinguishability in terms of the
Frobenius norm || G||r of G, which is slightly easier to compute than its eigenvalues.

Corollary 5.4. Let n > 2 be an integer and let G be the Gram matrix of a set S of n pure states. If

IGl[e <

S =

then S is antidistinguishable.

It is perhaps worth noting that for all Gram matrices G we have \/n < ||G||g < n, with the lower
bound being saturated when the states in the set are mutually orthogonal and the upper bound being satu-
rated when the states in the set are all equal to each other. Corollary 5.4 thus says that if the states in a set
are “close enough” to being mutually orthogonal then they must be antidistinguishable.

Proof of Corollary 5.4. Define x; = /A;/nforall0 < j < n — 1, so that the conditions Tr(G) = n and
|G||r < 1n/+/2 are equivalent to

N

n—1 ) n—1 4 1
2 x]' =1 and Z Xj S ’ (14)
j=0 j=0

respectively. If we can show that these conditions imply /Ay < ]7_1:—11 VA Ge, xp < 2;1:_11 x;) then
Theorem 5.2 will imply the present corollary.
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;1;11 x? and thus

To this end, we note that the constraints (14) imply x% =1- j

N —

<1—2x>2 i xt <

j=1
Multiplying through by 2 and rearranging slightly shows that the above inequality is equivalent to
2 n—1 5 5
1—2235 §4inx]-.

ij=1
i>j

Using the fact that 1 = 7 01 x] on the left-hand-side, and then square-rooting both sides (noting that the
right-hand-side is non-negative, so the direction of the inequality is preserved) then shows that

15)

where the second inequality follows since the 2-norm is at most the 1-norm. In particular, the outermost
inequality in (15) can be rearranged as

n—1 n—1
x% < Zx]z—i—Z Z XiXj,
j=1 ij=1
i>j
which can be factored as
n—1 2
x% < x| -
j=1
This implies xp < 2 1 xj, as desired. O

Our final sufficient condition for antidistinguishability arises simply by noting that if each off-diagonal
entry of a Gram matrix G has |g;;| < /(n—2)/(2n —2), then ||G||r < n/v/2, so Corollary 5.4
tells us that the set is antidistinguishable. In other words, we have the following corrected version of
Conjecture 5.1:

Corollary 5.5. Let n > 2 be an integer and let S = {|o), |¢1), ..., |[Pn—1)}. If

1
i) < 5 forall 0<i#j<n—1 L

then S is antidistinguishable.

6 Tightness of these bounds

We already noted that the bounds of Section 4 are tight, as demonstrated by Example 3.3 (which is cir-
culant). The bound of Theorem 5.2 is also tight, as demonstrated by the fact that it is both necessary and
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sufficient for circulant matrices. Corollary 5.4 can also be seen to be tight via circulant matrices: if € > 0
is small and G is a circulant Gram matrix with eigenvalues A\g = n/2+¢, A1 = n/2 —¢,and A; = 0 for

j > 2, then
n—1 n n
Ly =55 re= v

so any set of pure states with Gram matrix G must not be antidistinguishable, by Theorem 5.2. However,
in this case, we also have

Gl =y (2 +e) + (B =) =/ B2 < v,

demonstrating that the quantity 7/+/2 in Corollary 5.4 cannot be increased at all.

The only question remaining is whether or not the bound established by Corollary 5.5 is also tight. It
is trivially tight when n = 2 or n = 3 since it matches the corresponding necessary condition provided
by Corollary 4.2. The situation is less clear when n > 4, since when n = 4, for example, we have the
following situation:

o If [(¢i]9;)| > 2/3 ~ 0.6667 for all i # j then the set is not antidistinguishable (Corollary 4.2).

o If [{¢;]y;)| < 2/3 forall i # j then the set may be antidistinguishable (Example 3.3), so Corol-
lary 4.2 is tight.

o If [(yi|y;)] < 1/+/3 ~ 0.5774 for all i # j then the set is antidistinguishable (Corollary 5.5).

* It is currently only known that the set may not be antidistinguishable when [{y;|¢;)| > 0.6451

[RS23]. Our next example improves this bound to 1/+/3, thus showing that Corollary 5.5 is tight,
at least when nn = 4:

Example 6.1. Letc =1/ \/§ and consider the matrix

1 c c c
G |€ 1 ci (1+ci)/2
e —ci 1 (1—ci)/2

c (I1—ci)/2 (1+4ci)/2 1

It is straightforward to check that G is positive semidefinite and is thus the Gram matrix of some set S of
n = 4 pure states. Since |g; ;| =1/ V3 for all i # j, Corollary 5.5 tells us that S is antidistinguishable.

Now lete > 0 be small, letv = [1,(—/3+1i)/2,(—v/3 —1)/2,0]T and w = [0,0,0,1]7, and define

Ge = ﬁ(G + e(vv* + ww* —3I)).
A straightforward computation shows that G is positive semidefinite if 0 < ¢ < 1/10 and its diag-
onal entries all equal 1, so it is the Gram matrix of some set S of n = 4 pure states. Furthermore,
lim,_,g+ Ge¢ = G, so the inner products of the members of S can be made to have modulus as close to
1/+/3 as we like by choosing € > 0 sufficiently small.
We claim that G is not (n — 1) = 3-incoherent, so (by Theorem 3.2), S, is not antidistinguishable. To
verify this claim, we need to find a 3-locally PSD matrix X for which Tr(XG,) < 0. To this end, consider
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the matrices

T2 —V3—i —\3+4i 0
—3+i 2 1—V3i 0
Y = d
—\V3—i 143 > o “
0 0 0 0
0 14+V3i 1—+/3i -2
7 1—+/3i 0 —V3+i —V3-i
T 1+VB —/3—i 0 —V3+i
—2  —V3+i —V3—i 2V/3(1+5¢)

The following claims are all straightforward (albeit somewhat tedious) to verify:
e Tr(YG;) =0forall0 <e<1/2
* Tr(ZG:) = —(20V/3)e? /(1 —2¢) < O forall0 < e < 1/2.
o The matrix X =Y + 6Z is 3-locally PSD when 0 < € < 1/2and 0 < § < 5\@8/(1 + be).
It follows that, for these choices of § and €, X is a 3-locally positive semidefinite matrix with
Tr(XGe) = —(20V/3)de?/(1 —2¢) < 0,
proving our claim.
We summarize the above example and related theorems in Figure 3.
{ilw;)
14
075 1

0571
025 1

90

Figure 3: How inner products between n pure states determine their antidistinguishability. If all inner
products are on or below the filled-in circles then the states are antidistinguishable (Corollary 5.5) and if
all inner products are strictly above the hollow circles then the states are not antidistinguishable (Corol-
lary 4.2). In between those circles, the states might be antidistinguishable (Example 3.3), and when n = 4
at least they might also be not antidistinguishable (Example 6.1).

We still do not know whether or not Corollary 5.5 is tight when n > 5. The difficulty here is that
the circulant matrices that we used to show that Corollary 5.4 is tight only have the property that their
off-diagonal entries all have absolute value equal to each other when n < 3. When n > 4 we must explore
non-circulant matrices like the one from Example 6.1, and this seems much more difficult.

Software. Companion software that implements the SDPs from Equation (2) in addition to Examples 2.1,
3.3, and 6.1 can be found at the GitHub repository [JRS23]. This repository contains Python code that
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makes use of the toqito quantum information package [Rus21] as well as the PICOS package [SS22]
which invokes the CVXOPT solver [ADV20] for solving the SDPs.
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