
Computer Physics Communications () –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

GPU-accelerated Gibbs ensemble Monte Carlo simulations of
Lennard-Jonesium
Jason Mick a, Eyad Hailat b, Vincent Russo b, Kamel Rushaidat b, Loren Schwiebert b,
Jeffrey Potoff a,∗
a Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, MI 48201, USA
b Department of Computer Science, College of Engineering, Wayne State University, USA

a r t i c l e i n f o

Article history:
Received 23 October 2012
Received in revised form
7 June 2013
Accepted 25 June 2013
Available online xxxx

Keywords:
Monte Carlo
Canonical ensemble
Gibbs ensemble
GPU
CUDA

a b s t r a c t

This work describes an implementation of canonical and Gibbs ensemble Monte Carlo simulations on
graphics processing units (GPUs). The pair-wise energy calculations, which consume the majority of
the computational effort, are parallelized using the energetic decomposition algorithm. While energetic
decomposition is relatively inefficient for traditional CPU-bound codes, the algorithm is ideally suited
to the architecture of the GPU. The performance of the CPU and GPU codes are assessed for a variety of
CPU and GPU combinations for systems containing between 512 and 131,072 particles. For a system of
131,072 particles, the GPU-enabled canonical and Gibbs ensemble codes were 10.3 and 29.1 times faster
(GTX 480 GPU vs. i5-2500K CPU), respectively, than an optimized serial CPU-bound code. Due to overhead
frommemory transfers from system RAM to the GPU, the CPU code was slightly faster than the GPU code
for simulations containing less than 600 particles. The critical temperature T ∗

c = 1.312(2) and density
ρ∗
c = 0.316(3)were determined for the tail corrected Lennard-Jones potential from simulations of 10,000

particle systems, and found to be in exact agreementwith priormixed field finite-size scaling calculations
[J.J. Potoff, A.Z. Panagiotopoulos, J. Chem. Phys. 109 (1998) 10914].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the last 50 years, Monte Carlo simulations have been used
extensively to provide fundamental insight regarding the relation-
ship between atomic-level interactions and macro-scale phenom-
ena. In the late 1980s through the 1990s, a proliferation of new
algorithms, including Gibbs ensemble [1,2], configurational-bias
[3–7], Gibbs–Duhem integration [8], and histogram-reweighting
techniques [9–12] simplified greatly the determination of va-
por–liquid coexistence curves. The Gibbs ensemble method is par-
ticularly versatile; in addition to vapor–liquid coexistence, this
method has been used to determine adsorption equilibria in sin-
gle [13–16] and multi-component systems [17,18], membrane
equilibria, solid–fluid [19] and solid–vapor [20,21] equilibria. Un-
like molecular dynamics, where highly optimized parallel codes
are widely available to the public [22–26], most Gibbs ensem-
ble Monte Carlo calculations (GEMC) have been performed with
codes that execute on a single CPU core. This limits calculations to

∗ Corresponding author.
E-mail address: jpotoff@wayne.edu (J. Potoff).

relatively small system sizes (<5000 atoms), and precludes the use
of GEMC for the simulation of equilibria inmost biological systems.

There have been numerous attempts to parallelize Monte Carlo
simulations based on three core algorithms, embarrassingly par-
allel, farm, and domain decomposition. The embarrassingly parallel
approach is the simplest to implement; a replica of the system
is placed on each processor core, and each instance runs inde-
pendently without any communication between processors. For
systems with short equilibration periods, parallel efficiencies near
100% are possible. However, for systems with long equilibration
periods, this method quickly becomes inefficient. In the farm al-
gorithm [27], also known as energetic decomposition, the energy
calculation is distributed over the available processing cores. Some
efforts have shown improved performance with this method [28],
but the farm algorithm has been avoided due to communications
overhead noted in early comparative studies between energetic
decomposition and embarrassingly parallel algorithms [29]. Do-
main decomposition is an example of a modified Markov chain al-
gorithm [30], and leverages the fact that in large systems, particles
outside the range of interactions of other particles may be moved
simultaneously. The simulation box is split into cells, and interac-
tions on each cell are calculated on a single CPU core. The amount of
inter-processor communication is reduced compared to the farm
method. In early work, domain decomposition was dismissed as

0010-4655/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cpc.2013.06.020

http://dx.doi.org/10.1016/j.cpc.2013.06.020
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:jpotoff@wayne.edu
http://dx.doi.org/10.1016/j.cpc.2013.06.020

2 J. Mick et al. / Computer Physics Communications () –

inefficient, since its performance was worse than the embarrass-
ingly parallel method [31]. More recently, however, it has been
shown that by using a sequential updating algorithm the paral-
lel efficiency of domain decomposition may be improved signifi-
cantly [32–34]. Additional modifiedMarkov chain algorithms have
been proposed where displacement of all particles, or a subset of
particles, is attempted simultaneously [35]. These methods are re-
ferred to as hybrid Monte Carlo methods, due to the use of veloc-
ities to determine new trial locations, which are typically used in
Newtonian-physics basedmolecular dynamics simulations. The ef-
ficiency of hybridMonte Carlo methods tends to be dictated by the
phase [36] and type of atoms or molecules studied [37].

In addition to general methods of parallelizing atomistic
Monte Carlo simulations, some specialized ensemble-specific
techniques have been demonstrated. Chen and Hirtzel proposed
a macro state Markov chain model (MSMCM) for parallelization
of simulations in the grand canonical ensemble [38–40]. Spatial
updating algorithms, combined with sequential updating and
domain decomposition, have been used to improve the efficiency
of parallel Monte Carlo simulations in the grand canonical
ensemble [34]. Parallel grand canonical Monte Carlo simulations
have been combined with molecular dynamics for the simulation
of diffusion in porous materials [41,42]. Additional parallelization
efforts have been focused on the configurational-bias algorithm,
which is crucial to achieving reasonable acceptance rates for
molecule transfers in grand canonical and Gibbs ensemble Monte
Carlo simulations. In order to improve the success rate for growing
chain molecules in a dense system, Esselink et al. proposed
evaluatingmultiple trial locations for the first bead in parallel [43].
Thismethodology for particle exchangewas combinedwith hybrid
Monte Carlo moves for particle displacement in Gibbs ensemble
Monte Carlo where a parallel efficiency of approximately 80% was
observed [36,43].

In recent years the field of parallel computing has shifted its fo-
cus from the CPU to a new kind of hardware, the graphics process-
ing unit (GPU), which was originally created satisfy the demand
for increasing realism in virtual video game environments [44].
GPUs have outpaced CPU in terms of units of computational power
per electrical power consumption and computational power per
discrete hardware costs. GPUs typically devote more transistors
to fast parallel math processing than CPU at the expense of flex-
ibility. Compared to the relatively small collection of complex
processing cores found in modern CPU, GPUs are composed of a
collection of simpler processors (streaming multiprocessors –
‘‘SMs’’ – each composed of dozens of shader core subunits) capa-
ble of massively parallel math operations. GPUs have several types
of volatile storage available for simulation variables—DRAM, con-
stant cache memory, global cache memory, shared memory and
registers. DRAM has the highest latency, while registers offer the
lowest latency. However, the DRAM bank has significantly larger
capacity than the registers or cache, hence part of the challenge in
developing efficient algorithms to utilize the GPUs is optimizing
variable distribution and memory throughput.

Given inherent hardware differences between multi-core CPU
and GPU, the creation of optimized GPU algorithms requires a fun-
damental reexamination of parallelization methods. Some meth-
ods that appear less viable for CPU parallelization may perform
well on the GPU, and the converse may also be true. Additionally,
there is an opportunity to develop new algorithms/techniques,
which were not considered or postulated due to the architectural
differences between single instruction multiple data (SIMD) de-
vices and the traditional CPU-basedmultiple-instructionmultiple-
data (MIMD) clusters and supercomputers. Despite relatively
mature GPU-enabled molecular dynamics simulation engines
[25,45–49], there has been significantly less exploration of Monte
Carlo simulations on GPU. As with molecular dynamics, GPGPU

computing is expected to bring sizeable benefits to Monte Carlo
simulations. Early work has focused on simple systems, due to
the relative complexity of writing optimal GPU code. 2D and 3D
simulations of Ising models were recently accelerated using sin-
gle [50] and multiple GPUs [51]. GPU-driven canonical ensem-
ble simulations of hard spheres [52], have also been published.
Canonical ensemble simulations ofmethane in a zeolite framework
have been performed on GPU for small systems (Nmethane ≤ 128
particles) [53]. This code was later expanded to perform GPU-
accelerated grand canonical Monte Carlo simulations of methane
and CO2 in a zeolite [54–56].

In thiswork, an implementation of Gibbs ensembleMonte Carlo
on the GPU is presented. A straightforward implementation of
the farm algorithm is used for parallelization of the pair-wise en-
ergy calculations for the three distinct move types: particle dis-
placement, swap and volume exchange. The choice of the farm
algorithm is motivated by the fact that for complex molecules,
such as those found in biomolecular simulations, long equilibration
periods are required for adequate sampling of phase space, which
reduces significantly the efficiency of embarrassingly parallel
methods. Simulations of biomolecular systems present an addi-
tional problem of system size. While Monte Carlo simulations for
phase equilibria and physical property prediction are performed
typically for systems of 5000 atoms or fewer, typical biomolecu-
lar simulations contain tens to hundreds of thousands of atoms.
Therefore it is important to have an implementation that scales
well with system size. As a demonstration, calculations are per-
formed for systems of Lennard-Jones beads ranging in size from
512 to 131,072 particles.While the properties of the Lennard-Jones
fluid may be studied easily with a serial code, the wealth of data
in the literature makes this the ideal system for the evaluation
of new methodologies. Calculated energies, pressures, saturated
liquid and vapor densities are presented for a range of tempera-
tures and compared to literature data for validation. Detailed as-
sessments of the performance of the GPU-accelerated GEMC code
relative to an equivalently designed and optimized serial code are
presented for a range of GPU and CPU. Additional data are pre-
sented for simulations in the canonical ensemble.

2. GPU implementation

The Gibbs ensemble methodology utilizes two simulation
boxes, each representing a region of fluid deep within their re-
spective phases (vapor, liquid) [1]. The three criteria for equi-
libria, equality of temperature, pressure and chemical potential
between phases, are satisfied through three types of moves: par-
ticle displacement within a phase, volume exchange and particle
swaps between phases. Acceptance probabilities for eachmove are
defined as follows

displacement: acc (o → n) = e−β[Unew−Uold] (1)
volume swap: acc (o → n)

= min


1,

V new
1

V old
1

N1+1 V new
2

V old
2

N2+1

e−β[△U1+△U2]


(2)

particle swap: acc (box 1 → box 2)

= min

1,

N1V2

(N2 + 1) V1
e−β[△U1+△U2]


(3)

particle swap: acc (box 2 → box 1)

= min

1,

N2V1

(N1 + 1) V2
e−β[△U1+△U2]


(4)

where the subscripts 1 and 2 refer to each simulation box, △Ui =

Unew
i − Uold

i denotes the energy change for the trial move in box
i, V = V1 + V2, and N = N1 + N2.

J. Mick et al. / Computer Physics Communications () – 3

The particle displacement and swap routines require the
calculation of pair-wise interactions between the selected particle
and the rest of the particles in the system. For the displacement
move, there areNbox−1 evaluations of the Lennard-Jones potential
for the trial location, where Nbox is the number of particles in the
simulation box of interest. The old energy can be either stored
in local memory, or recalculated using Nbox − 1 evaluations. The
swap move requires Nbox,in total evaluations of the Lennard-Jones
potential for the trial insertion site, while the old energy, as in
the displacement move, can be either stored or recalculated via
Nbox,out − 1 pair evaluations. In the volume swap move, distances
between all particles in both boxes are rescaled, which requires
N2

−N
2 total evaluations of the Lennard-Jones potential per box. For

small particle numbers, it may be faster to store the r−12 and r−6

components of the pair-wise Lennard-Jones interaction for each
pair of beads and simply rescale the total energy of each box
instead of completely recalculating the energy for each attempted
volume exchange. As systems sizes increase, however, thememory
requirements make such a methodology impractical on the GPU.
For a 10,000 atom system, storage of the N2

−N
2 unique r−12 and

r−6 components would require approximately 762 MB of memory
on the GPU. Furthermore, this optimization is not possible for
molecular systems, and therefore was avoided.

The architecture of the GPU is shown schematically in Fig. 1.
Threads are grouped into warps, warps are grouped into blocks,
multiple blocks are combined in a single streamingmultiprocessor
(SM), and streaming multiprocessors are combined to form the
GPU. On GPU with Fermi architecture, there are 32 threads in a
single warp. This architecture is a natural fit for the method of
energetic decomposition, where parts of the energy calculation
are split, or farmed, among available resources. This parallelization
methodology is also well suited to problems of interest to our
group, e.g. simulation of equilibria in biomolecular systems, which
contain tens to hundreds of thousands of atoms. In this work, pair-
wise energy calculations for the particle displacement and swap
moves were performed on the GPU by calling N threads, where
N − 1 is the number of unique pair interactions to be evaluated;
each thread (except the thread whose index corresponds to the
particle moved) was used to calculate the interaction between two
particles. It might be tempting to use N − 1 threads, but testing
showed that this makes both indexing the particles less intuitive
and creates thread divergence (as the threads after the selected
particle index would have to add an offset); hence N threads were
used and a simple conditional was used to idle the test particle’s
thread. For the volume exchange move, energy calculations on
the GPU were performed with 4N threads, a thread count that
allowed for improved memory addressing. Energy calculations
for the two simulation boxes were assigned as two individual
kernel calls to separate streams, allowing the new energy of each
box to be calculated simultaneously if sufficient resources are
available. All calculations used 128 threads per block, which has
been shown to provide efficient utilization of the GPU for these
types of calculations [53]. A tree summation algorithmwas used to
coalesce the results from the individual threads.Within a block, the
results from the first half of the threads are added to the secondhalf
of the threads. This process is repeated, with half as many threads
participating in each phase, until the entire calculated results from
a block is stored in the first thread’s sharedmemory array position.
As each block finishes, its first thread increments a thread-safe
global counter, and copies its results from shared memory to a
global array. The final block to execute then copies the partial sums
from other blocks to positions in its shared memory array. It then
repeats the previous data coalescing process, yielding a final inter-
block sum.

Additional complexities arise in the volume move, since the
pair-wise energies for all N particles in the system have to be

Fig. 1. In this work, energy calculations are parallelized using the method of
energetic decomposition. The calculation of pair interactions is distributed among
available threads. If there are more unique pairs than available threads (shown
as k, k + 1, . . .) then threads receive another pair interaction to process, and
so on, until all interactions have been farmed out. Threads are organized into
‘‘blocks’’ (B), which are then organized onto units of hardware known as streaming
multiprocessors (SMs). Multiple SMs can be found on a graphics processing unit
(GPU).

recalculated. This requires (N2
−N)/2 evaluations of the Lennard-

Jones potential, which in a traditional serial CPU-bound code
would be anO(N2) operation. The brute force approach on the GPU
would be to calculate (N2

−N) interactions and correct for double
counting pair-wise interactions by dividing the resulting energy by
2. This naïve approach offers easier thread indexing, but wastes
resources, since (N2

− N)/2 threads are performing redundant
calculations. As N grows large, the device typically does not have
enough hardware to waste on duplicate calculations. Hence, it is
desirable to calculate only unique interactions.

A remapping algorithm was developed to allocate pair interac-
tions to arbitrary threads, which allows direct indexing in a thread-
coherent manner (the naïve alternative – using a loop to calculate
the pair index – creates thread divergence). This algorithm maps
the thread index to a 2-dimensional array of particle indices, which
is shown graphically in Fig. 2. Interactions on the grid above the
line defined by i = j are unique. To transform this unique-pair in-
dex space from a triangle, which would require redundant calcu-
lations, to a rectangular block of unique indexes, the region below
the equal-index line in the top left quadrant is mapped to the re-
gion of unique indices above the equal-index line in the lower right
quadrant. Bymapping all unique particle interactions to a contigu-
ous index space it is possible to determine each pair interaction
efficiently using an arbitrary thread. For larger systems, the eval-
uation space (N2

− N)/2 is still too large to assign one pair per
thread (e.g. for N = 10,000 there are approximately 50 million
unique pairs), hence 4 rows of the remapped space are evaluated

4 J. Mick et al. / Computer Physics Communications () –

Fig. 2. Scheme for mapping of unique interaction pairs to allow for more efficient
distribution of threads.

at once, which offers both effective acceleration and memory ad-
dressing gains.

The implementation presented in this work differs somewhat
from the GPU implementation of grand canonical Monte Carlo by
Kim et al., which uses a hybrid of energetic decomposition and
embarrassingly parallel methods [54]. In the Kim method, a large
number of unique Monte Carlo simulations are run on discrete
blocks of the GPU, an approach similar to running independent
Markov chains on individual CPU-cores; within a block pair-wise
energy calculations are distributed among available threads. The
hybrid methodology provides significant performance increases
for the simulation of small systems sizes that are typically found in
adsorption calculations, but becomes less efficient as the size of the
system increases, or for systems where long equilibration periods
are required.

Both the Gibbs and canonical ensemble codes were written
in ANSI C. The serial version was compiled using g++ (version
4.4.6) with compiler flags -Wall- O2. The CUDA code was
divided into algorithms that run on the CPU-side (host) and
algorithms that run on the GPU (device). Code containing CUDA
application programming interface (API) calls was compiled using
the nvcc compiler from NVIDIA (version 4.1) with flags -fnostrict-
aliasing -DUNIX -m64 -O2 -gencode=arch=compute_20,code=
\ ‘‘sm_20,compute_20\’’.

3. Simulation details

In this work, interactions between particles are governed by the
ubiquitous Lennard-Jones potential

U

rij


= 4ϵij


σij

rij

12

−


σij

rij

6


(5)

where U is the configurational energy of the pair interaction, εij is
the well depth, σij is the particle diameter and rij is the distance
between particles i and j. Reduced quantities were defined as T ∗

=

kBT/ε, ρ∗
= Nσ 3/V ,U∗

= U/ε, p∗
= pσ 3/ε.

Simulations were performed for both the truncated and tail-
corrected Lennard-Jones potential. Analytical tail corrections were
given by the following equations

U∗(rc) =
8
9
πρ∗ϵσ 3


σ

rc

9

− 3


σ

rc

3


(6)

P∗(rc) =
32
9

πρ∗2ϵσ 3


σ

rc

9

−
3
2


σ

rc

3


. (7)

The GPU accelerated Gibbs ensemble code was validated for
both the truncated and long-range corrected Lennard-Jones poten-
tial. Calculations were performed for two system sizes, N = 500
and N = 10,000. Initial volumes for each simulation box were de-
termined based on the expected equilibrium density of the gas and
liquid phases at the given reduced temperature, T ∗. The Lennard-
Jones potential cutoff was set at rc = 2.5σ for simulations using a
truncated potential; long-range corrected datawere obtained from
simulations with rc = 3.0σ . The 500 particle system was equili-
brated for 1.0 × 108 Monte Carlo steps (MCS) and data were ex-
tracted from a 7.0 × 108 MCS production run. The 10,000 particle
systemwas equilibrated for 2.0×107 MCS, and datawere collected
from a 1.8×108 MCS production run. Temperatures were selected
to match published data [1,57–59].

Simulations in the canonical ensemble were performed at vary-
ing densities in the low and high density regimes for a system size
of N = 500, with, and a cutoff of rc = 3.0σ . The system was al-
lowed equilibrate for 5.0 × 107 Monte Carlo steps (MCS) and pro-
duction data was gathered from a 2.5 × 108 MCS production run.
Isotherms were produced for T ∗

= 0.85 and 0.90. These simula-
tion parameters followed those suggested by the National Insti-
tute of Standards and Technology for its benchmark data of a pure
Lennard-Jones fluid [60].

Timing data for serial simulationswere run on an Intel R⃝ CoreTM
i5-2500K CPU operating at 3.3 GHz and an Intel R⃝ CoreTM 2 Quad
CPU Q6600, clocked at 2.40 GHz, to ascertain the effect of CPU on
the performance of the serial code. The serial and GPU codes were
designed to perform an identical number of evaluations of inter-
particle distances and the Lennard-Jones potential for each Monte
Carlo move for a given system size. This provides a direct and
unambiguousmeasure of the performance improvements possible
using the GPU. Calculations in both the GPU and the serial code
were performed using double precision variables for the storage
of particle coordinates, distances, and energies. Timing data for
GPU-accelerated simulations were determined for three different
GPUmodels—the NVIDIA R⃝ GeForceTM GTX 465 (352 CUDA cores @
1250MHz), the GeForceTM GTX 480 (480 CUDA cores@ 1401MHz),
and the NVIDIA R⃝ GeForceTM GTX 560 Ti (384 CUDA cores @
1701 MHz), all of which shared a common board designer, EVGA.
All validation and timing results were run for five trials per data
point with a randomized starting seed, to collect the average and
standard deviation values for the data point.

4. Results and discussion

The GPU accelerated Gibbs ensemble Monte Carlo engine
was used to determine vapor–liquid coexistence curves for the
truncated and long range corrected Lennard-Jones potential for
systems containing 10,000 atoms. These data are shown in Fig. 3,
and show excellent agreement with the original Gibbs ensemble
results of Panagiotopoulos for systems containing 500 atoms [1],
as well as more modern approaches using grand canonical
Monte Carlo simulations coupled with histogram reweighting
methods [57–59]. Corresponding numerical data are listed in
Table 1. As expected, the effect of system size is negligible at
temperatures away from the critical region. The Gibbs ensemble
method is well known to exhibit instabilities in the near critical
region, however, this is with respect to the traditional system sizes
used in GEMC calculations of 500–1000 atoms. Simulations of the
10,000 atom system were stable at temperatures up to T ∗

= 1.30,
which enabled the prediction of the critical point with accuracy
equivalent to histogram-reweighting calculations combined with
mixed field finite-size scaling techniques. Data between T ∗

= 1.2
and 1.3 (long range corrected) or 1.0667 and 1.1696 (truncated)
were fit to the density scaling law for critical temperature [61]

ρliq − ρvap = B (T − Tc)β (8)

J. Mick et al. / Computer Physics Communications () – 5

Table 1
Data from CUDA-Gibbs ensemble Monte Carlo simulations for truncated Lennard-Jones potential with rcut = 2.5σ and the tail-corrected Lennard-Jones potential, with
rcut = 3.0σ . Number in parenthesis represents the uncertainty in the last digit.

T ∗ ρ∗
vapor ρ∗

liquid U∗
vapor U∗

liquid P∗

Truncated Lennard-Jones potential, rcut = 2.5σ

1.1696 0.177(3) 0.454(8) −1.40(3) −3.00(3) 0.12(1)
1.1494 0.144(2) 0.498(3) −1.17(2) −3.24(2) 0.1012(8)
1.1111 0.1098(8) 0.5554(5) −0.92(7) −3.58(5) 0.08098(4)
1.0667 0.0797(7) 0.5999(6) −0.69(6) −3.87(3) 0.0615(3)
1.0256 0.0603(4) 0.6333(5) −0.54(4) −4.09(4) 0.0474(2)
0.9877 0.0462(4) 0.6601(5) −0.42(4) −4.28(4) 0.0367(2)
0.9412 0.0335(2) 0.6907(2) −0.31(1) −4.51(2) 0.0266(2)

Lennard-Jones potential, rcut = 3.0σ + long range corrections

1.30 0.202(4) 0.438(5) −1.57(3) −3.04(2) 0.1216(9)
1.27 0.156(2) 0.486(2) −1.25(2) −3.35(1) 0.1065(9)
1.25 0.135(2) 0.514(2) −1.10(2) −3.873(9) 0.0967(4)
1.20 0.099(2) 0.564(1) −0.83(1) −3.873(9) 0.0772(6)
1.15 0.0733(9) 0.6057(8) −0.634(8) −4.171(5) 0.0599(4)
1.11 0.0578(3) 0.6337(5) −0.511(2) −4.378(4) 0.0484(2)
1.00 0.0294(2) 0.7008(4) −0.277(2) −4.894(3) 0.0249(2)
0.90 0.0141(2) 0.7521(3) −0.142(3) −5.312(3) 0.0115(2)
0.75 0.0030(1) 0.8208(2) −0.0344(5) −5.899(2) 0.0022(1)

Fig. 3. Vapor–liquid coexistence curves predicted for the truncated (blue
diamonds) and tail corrected (green triangles) Lennard-Jones fluid from 10,000
particle simulations in the Gibbs ensemble. Additional data shown for comparison
for the tail corrected Lennard-Jones potential: Gibbs ensemble simulations for a
500 particle system (black circles) [1], grand canonical Monte Carlo simulations
combined histogram reweighting (red squares) [58] and (violet triangle right) [59].
Filled symbols correspond to the predicted critical points. For the truncated
Lennard-Jones potential, the data of Wilding for rcut = 2.5σ are shown (orange
triangle down) [57]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

and the law of rectilinear diameters [62]

ρliq + ρvap

2
= ρc + A (T − Tc) (9)

where β = 0.325 is the critical exponent for Ising-type fluids in
three dimensions. For the tail corrected Lennard-Jones potential
T ∗
c = 1.312(2) and ρ∗

c = 0.316(3), while for the Lennard-Jones
potential truncated at 2.5σ , T ∗

c = 1.186(1) and ρ∗
c = 0.318(2).

In both cases, the data are in exact agreement with prior calcula-
tions [63].

The internal energy per particle as a function of temperature
for each phase is presented in Fig. 4, while the predicted vapor
pressures are shown in Fig. 5. In all cases, data produced by the
GPU accelerated GEMC engine are in excellent agreement with
published data. These data show a significant improvement in
statistical precision compared to prior calculations. This is the
result of being able to run very large system sizes, which suppress

Fig. 4. Average energy per particle for vapor and liquid phases predicted from
10,000 particle Gibbs ensemble Monte Carlo simulations for the truncated, rc =

2.5σ , (blue diamonds) and tail corrected (green triangles) Lennard-Jones potential.
Data for simulations of the tail-corrected Lennard-Jones potentials performed with
300 (black circles) and 500 (red squares) particles are presented for comparison [1].
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

fluctuations in energy and particle number, both of which scale
with system size as O(1/N1/2). Additional validation of the code
was performed by running canonicalMonte Carlo simulations for a
variety of densities for T ∗

= 0.85, 0.90. These datamay be found in
the supplementary material (see the Appendix). In all cases, exact
agreement was found between the predictions of the GPU-based
Monte Carlo code and benchmark data from the National Institute
of Standards and Technology (NIST).

Benchmarkswere performed for the GPU-accelerated canonical
and GEMC codes and an optimized serial code written in C++. The
effects of increasing system size were examined for systems of
size N = 512, 1024, 2048, 4096, 8192, 16,384, 32,768, 65,536,
and 131,072. For simulations in the Gibbs ensemble, the volume
of each simulation box was selected to produce an initial density
ρ∗

= 0.3, with particles being distributed evenly between the two
boxes. Five trials of 1 × 106 Monte Carlo steps (MCS) were run for
each code (serial and GPU) at each data point.

In Fig. 6, performance data are presented for the GPU-
accelerated and serial canonical ensemble Monte Carlo code.

6 J. Mick et al. / Computer Physics Communications () –

Table 2
Timing data for canonical (NVT) and Gibbs ensemble Monte Carlo simulations performed on various CPU and GPU. All calculations were performed for rcut = 3.0σ , with
analytical tail corrections. Numbers in parentheses denote uncertainty in the last digit.

N Q6600 (CPU) i5-2500K (CPU) GeForce GTX
465 + Q6600 (GPU)

GeForce GTX
480 + Q6600 (GPU)

GeForce GTX
560 + Q6600 (GPU)

GeForce GTX
560 + i5-2500K (GPU)

Canonical Monte Carlo simulations (NVT)

512 19.827(5) 11.552(4) 13.147(7) 11.722(4) 11.000(6) 10.935(5)
1 024 33.818(9) 20.987(5) 13.457(5) 11.953(7) 11.513(9) 11.465(5)
2 048 61.50(1) 40.277(5) 14.48(1) 12.472(4) 12.497(9) 12.43(2)
4 096 109.26(2) 73.32(2) 16.41(1) 13.827(5) 18.3(2) 18.26(3)
8 192 188.54(2) 129.20(5) 26.19(2) 21.22(1) 26.10(2) 25.98(2)

16,384 350.7(2) 242.52(1) 38.03(2) 30.495(8) 42.140(8) 42.06(1)
32,768 661.6(5) 456.88(3) 68.72(1) 49.415(5) 77.332(9) 77.29(2)
65,536 1255(4) 853(3) 125.91(3) 88.715(5) 145.06(3) 144.86(9)

131,072 2683.3(4) 1690(2) 238.36(5) 163.948(9) 281.08(2) 280.75(3)

Gibbs Ensemble Monte Carlo simulations (GEMC)

512 28.2(9) 15.9(5) 30.2(1) 24.06(8) 26.89 (4) 23.3(1)
1 024 90(7) 44(5) 33.9(6) 26.9(9) 30.3(5) 27.0(3)
2 048 230(20) 139(7) 39.4(2) 30.8(2) 37.1(9) 33.1(2)
4 096 703(4) 417(6) 55.8(4) 43.8(9) 58.1(9) 55(1)
8 192 2.64 × 103(3) 1.56 × 103(1) 123(1) 90(1) 136.8(8) 133(1)

16,384 1.05 × 104(5) 6.06 × 103(3) 349(4) 243(2) 411(2) 407(3)
32,768 4.0 × 104(1) 2.4 × 104(1) 1.13 × 103(1) 1.13 × 103(1) 1.45 × 103(1) 1.13 × 103(1)
65,536 1.6 × 105(1) 9.4 × 104(2) 4.38 × 103(4) 4.38 × 103(4) 5.47 × 103(4) 4.38 × 103(4)

131,072 6.6 × 105(9) 3.4 × 105(4) 1.80 × 104(1) 1.80 × 104(1) 2.26 × 104(1) 1.80 × 104(1)

Fig. 5. Vapor pressures predicted from10,000 particle Gibbs ensembleMonte Carlo
simulations for the Lennard-Jones potential truncated at 2.5σ (blue diamonds),
and the Lennard-Jones potential with analytical tail corrections (green triangles).
Statistical uncertainties were smaller than the symbol size. Data from the work
of Panagiotopoulos for the tail corrected Lennard-Jones potential are included for
simulations performed with 300 (black circles) and 500 (red squares) particles [1].
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Tabulated data may be found in Table 2. For the largest system
size, N = 131,072, the GPU-based code running on a GeForce
GTX 480 (the fastest tested GPU) is approximately 10 times
faster than code running on a single core of an Intel i5-2500K
processor (the fastest tested CPU). The inherent overhead, due
to memory transfers to and from the device over the PCI-
bus, make the GPU-enabled simulation slower than the serial
simulation for small particle numbers (N < 500). For systems
between 512 and 4096 particles, there was a negligible increase
execution time on the GPU, suggesting that for small system
sizes memory transfers between system RAM and GPU were
the primary performance bottleneck. For systems that equilibrate
rapidly, Kim et al., has proposed a solutionwhere each thread block
on the GPU executes an independent Monte Carlo simulation and
threads within a block are used to calculate the Lennard-Jones pair
potential [53]. Their method optimizes the total throughput on

Fig. 6. Performance data for canonical Monte Carlo simulations. Timing data were
determined from 1× 106 step simulations performed at ρ∗

= 0.30, T ∗
= 1.0 with

a Lennard-Jones cutoff of 3.0σ . Inset shows a magnified view of the timing data for
512 < N < 8192.

the GPU, while the methodology proposed in this work is focused
on minimizing the run time of a single Monte Carlo simulation.
On a Tesla C2050, which has 14 SM (448 compute cores), 112
independent simulations could be launched simultaneously (14
SM × 8 blocks/SM), which produced speedups of up to 50 relative
to a single core of an Intel 5530 (Nehalem) CPU for systems
containing 512–2048 particles. While throughput was maximized,
each simulation instance was running at approximately half the
speed as on a single CPU core. Due to differences in computational
hardware, a quantitative comparison cannot bemade between this
work and that of Kim et al., however, qualitatively our results
show approximately 2–6 times the performance for the runtime
of a single Monte Carlo instance on the GPU relative to runtime
on a CPU for systems with fewer than 2000 particles, albeit at
significantly reduced overall throughput.

Calculations were performed with several different GPU and
CPU combinations to determine the effect of hardware on the ex-
pected performance of the code. For the serial code, the Sandy

J. Mick et al. / Computer Physics Communications () – 7

Fig. 7. Performance data for Gibbs ensemble Monte Carlo simulations of Lennard-
Jones particles with rcut = 3.0σ . Data correspond to a simulation of 1× 106 Monte
Carlo steps. Inset shows a magnified view for 500 < N < 4096.

Bridge architecture i5-2500K CPU operating at 3.3 GHz was ap-
proximately 50% faster than the 2.4 GHz the Kentsfield Q6600 chip,
with themajority of this difference resulting from the 37% increase
in CPU clock speed of the i5-2500K compared to the Q6600. The
GeForce GTX 480 was found to be fastest of the GPUs tested, de-
spite having approximately 20% slower CUDA core and 10% slower
memory clock rates than the GeForce 560. This is because the
GeForce GTX 480 has 480 CUDA cores compared to 384 for the GTX
560 Ti. The choice of CPU was found to have a negligible impact
the performance of the GPU-accelerated code, despite the fact that
some portions of the code (reading configuration parameters, out-
put functionality) were contained on the host (CPU) side.

For the Gibbs ensemble simulations, the addition of the particle
swap and volume moves raises computational demands on the
GPU, but provides greater opportunity for optimization. In this
case, the ratio of moves was set to 1% volume exchange, 10%
particle swap and 89% particle displacement; ratios that are
typical of productionGEMC simulations. Timing data are presented
for system sizes between 512 and 131,072 particles in Fig. 7.
Numerical data are presented in Table 2. For the largest system
studied (N = 131,072) the GPUGEMC simulationswere 29.1 times
faster than the serial, CPU-bound code. For the Gibbs ensemble, the
breakeven point was found at 600 particles; for smaller system
sizes the CPU code was faster than the GPU code. This was due
to the extra overhead of memory communications for the second
box, and poor performance of the parallel volume move for small
system sizes.

The performance of GEMC simulations may be affected sig-
nificantly by the selected distribution of moves. There was a
negligible difference in the computational cost of the particle
displacement and particle swap moves on the GPU. The volume
exchange move is the most computationally demanding and in-
creasing the frequency of volume exchange moves carries a sub-
stantial performance penalty. In Fig. 8 timing data for simulations
performed with 1%–11% volume swap moves are presented. These
data are provided as percentage change from the baseline case (1%
volume swap, 10% particle swap, 89% particle displacement). The
data show that increasing the number of volume moves, while re-
ducing the number of particle displacements, led to large changes
in the run time of both the serial and GPU codes. In the GPU-GEMC
code, increasing the fraction of volume swaps performed from 1%
to 11% increased the simulation run timeby a factor of 2.3. For com-
parison, using the same distribution of moves in the serial code
produced a result that was 7.9 times slower than the original case.
Consistent with prior calculations, these data show the GPU GEMC

Fig. 8. Performance of Gibbs ensemble Monte Carlo simulations for varying ratios
of move types. Data are presented as a percent difference relative to the baseline
case of 1% volume transfer (TVT), 89% particle displacement (TM) and 10% particle
transfer (TPT). Data were calculated for a system containing 2048 particles with a
Lennard-Jones cut-off of 3.0σ .

code exhibits significantly better scaling with increasing workload
compared to the CPU GEMC implementation.

5. Conclusions

In thiswork, an implementation of Gibbs ensembleMonte Carlo
on the GPU has been demonstrated. Parallelization of routines to
calculate pair-wise energies was performed using the method of
energetic decomposition, where each pair interaction was calcu-
lated by a particular thread. This method is naturally well suited to
the architecture of the GPU, but has limitations. For small system
sizes, N < 600 particles, it was found that overhead from mem-
ory transfers between system RAM and the GPU led to worse per-
formance than a traditional serial CPU bound code. However, for
larger systems, the GPU code was found to be significantly faster;
for the largest system studied (N = 131,072), the GPU accelerated
Gibbs ensemble code was 29.1 times faster than the serial code. In
other words, for the 131,072 particle system, a single GPU offered
performance equivalent to 29 CPU Intel i5-2500K cores running in
embarrassingly parallel mode. For system sizes between 512 and
4096 particles, the computational effort was independent of sys-
tem size, suggesting theGPUhad significant unused computational
capacity that could be used, in principle, for calculations related to
advanced sampling techniques, such as configurational-bias, with
little or no penalty in run time. It should be noted that the perfor-
mance data presented in this work were determined using dou-
ble precision arithmetic for all calculations performed on the GPU.
Preliminary tests by our group have shown the GPU code was ap-
proximately twice as fast running single precisionmode compared
to double precision mode with a negligible loss in accuracy, there-
fore the presented performance data represent a conservative esti-
mate of the peak performance of the GPU code. For Lennard-Jones
beads, or small molecules, the hybridmethodology (a combination
of energetic decomposition and embarrassingly parallel methods)
used by Kim et al. in canonical Monte Carlo simulations is more ef-
ficient [53], however, for the molecules and system sizes typical in
biomolecular simulations, themethodology described in this work
is expected to provide the best overall performance.

Acknowledgments

Financial support from the National Science Foundation (NSF
CBET-0730786, OCI-1148168) and the Wayne State University
Research Enhancement Program is gratefully acknowledged.

8 J. Mick et al. / Computer Physics Communications () –

Appendix. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2013.06.020.

References

[1] A.Z. Panagiotopoulos, Mol. Phys. 61 (1987) 813.
[2] B. Smit, P. Desmedt, D. Frenkel, Mol. Phys. 68 (1989) 931.
[3] J.J. de Pablo, M. Laso, J.I. Siepmann, U.W. Suter, Mol. Phys. 80 (1993) 55.
[4] M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 103 (1999) 4508.
[5] J.I. Siepmann, D. Frenkel, Mol. Phys. 75 (1992) 59.
[6] T.J.H. Vlugt, M.G.Martin, B. Smit, J.I. Siepmann, R. Krishna,Mol. Phys. 94 (1998)

727.
[7] C.D. Wick, J.I. Siepmann, Macromolecules 33 (2000) 7207.
[8] D.A. Kofke, Mol. Phys. 78 (1993) 1331.
[9] A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61 (1988) 2635.

[10] J.J. Potoff, J.R. Errington, A.Z. Panagiotopoulos, Mol. Phys. 97 (1999) 1073.
[11] A.M. Ferrenberg, D.P. Landau, P. Peczak, J. Appl. Phys. 69 (1991) 6153.
[12] A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63 (1989) 1195.
[13] A.Z. Panagiotopoulos, Mol. Phys. 62 (1987) 701.
[14] S.C. McGrother, K.E. Gubbins, Mol. Phys. 97 (1999) 955.
[15] X. Peng, J.S. Zhao, D.P. Cao, J. Colloid Interface Sci. 310 (2007) 391.
[16] C. Lastoskie, K.E. Gubbins, N. Quirke, Langmuir 9 (1993) 2693.
[17] T. Okayama, J. Yoneya, T. Nitta, Fluid Phase Equilib. 104 (1995) 305.
[18] J.W. Jiang, S.I. Sandler, Langmuir 19 (2003) 5936.
[19] M.B. Sweatman, N. Quirke, Mol. Simul. 30 (2004) 23.
[20] B. Chen, J.I. Siepmann, M.L. Klein, J. Phys. Chem. B 105 (2001) 9840.
[21] X.S. Zhao, B. Chen, S. Karaborni, J.I. Siepmann, J. Phys. Chem. B 109 (2005) 5368.
[22] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,

R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26 (2005) 1781.
[23] S. Plimpton, J. Comput. Phys. 117 (1995) 1.
[24] D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev,

C. Simmerling, B. Wang, R.J. Woods, J. Comput. Chem. 26 (2005) 1668.
[25] J.A. Anderson, C.D. Lorenz, A. Travesset, J. Comput. Phys. 227 (2008) 5342.
[26] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4

(2008) 435.
[27] S.J. Zara, D. Nicholson, Mol. Simul. 5 (1990) 245.
[28] D.E. Ulberg, K.E. Gubbins, Mol. Simul. 13 (1994) 205.
[29] D.M. Jones, J.M. Goodfellow, J. Comput. Chem. 14 (1993) 127.
[30] G.S. Heffelfinger, Comput. Phys. Comm. 128 (2000) 219.
[31] G.S. Heffelfinger, M.E. Lewitt, J. Comput. Chem. 17 (1996) 250.

[32] R.C. Ren, G. Orkoulas, J. Chem. Phys. 126 (2007).
[33] C.J. O’Keeffe, G. Orkoulas, J. Chem. Phys. 130 (2009).
[34] C.J. O’Keeffe, R.C. Ren, G. Orkoulas, J. Chem. Phys. 127 (2007).
[35] B. Mehlig, D.W. Heermann, B.M. Forrest, Phys. Rev. B 45 (1992) 679.
[36] L.D.J.C. Loyens, B. Smit, K. Esselink, Mol. Phys. 86 (1995) 171.
[37] F.A. Brotz, J.J. Depablo, Chem. Eng. Sci. 49 (1994) 3015.
[38] A. Chen, C.S. Hirtzel, Sep. Technol. 4 (1994) 167.
[39] A. Chen, C.S. Hirtzel, Mol. Phys. 82 (1994) 263.
[40] A. Chen, C.S. Hirtzel, Int. J. Supercomput. Appl. High Perform. Comput. 8 (1994)

54.
[41] G.S. Heffelfinger, D.M. Ford, Mol. Phys. 94 (1998) 659.
[42] D.M. Ford, G.S. Heffelfinger, Mol. Phys. 94 (1998) 673.
[43] K. Esselink, L.D.J.C. Loyens, B. Smit, Phys. Rev. E 51 (1995) 1560.
[44] L. Durant, T. Szalay, R. McClellan, Hist. GPU (2011).
[45] T.D. Nguyen, C.L. Phillips, J.A. Anderson, S.C. Glotzer, Comput. Phys. Comm. 182

(2011) 2307.
[46] C.L. Phillips, J.A. Anderson, S.C. Glotzer, J. Comput. Phys. 230 (2011) 7191.
[47] W.M. Brown, P. Wang, S.J. Plimpton, A.N. Tharrington, Comput. Phys. Comm.

182 (2011) 898.
[48] J.C. Phillips, J.E. Stone, K. Schulten, Adapting a message-driven parallel

application to GPU-accelerated clusters, in: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, IEEE Press, Austin, Texas, 2008, p. 1.

[49] A.W. Gotz, M.J. Williamson, D. Xu, D. Poole, S. Le Grand, R.C. Walker, J. Chem.
Theory Comput. 8 (2012) 1542.

[50] T. Preis, P. Virnau, W. Paul, J.J. Schneider, J. Comput. Phys. 228 (2009) 4468.
[51] B. Block, P. Virnau, T. Preis, Comput. Phys. Comm. 181 (2010) 1549.
[52] A. Frezzotti, G.P. Ghiroldi, L. Gibelli, AIP Conf. Proc. 1333 (2011) 884.
[53] J. Kim, J.M. Rodgers, M. Athenes, B. Smit, J. Chem. Theory Comput. 7 (2011)

3208.
[54] J. Kim, B. Smit, J. Chem. Theory Comput. 8 (2012) 2336.
[55] J. Kim, L.C. Lin, R.L. Martin, J.A. Swisher, M. Haranczyk, B. Smit, Langmuir 28

(2012) 11923.
[56] J. Kim, R.L. Martin, O. Rubel, M. Haranczyk, B. Smit, J. Chem. Theory Comput. 8

(2012) 1684.
[57] N.B. Wilding, Phys. Rev. E 52 (1995) 602.
[58] J.J. Potoff, A.Z. Panagiotopoulos, J. Chem. Phys. 112 (2000) 6411.
[59] W. Shi, J.K. Johnson, Fluid Phase Equilib. 187 (2001) 171.
[60] http://www.cstl.nist.gov/srs/LJ_PURE/index.htm.
[61] J.S. Rowlinson, R.L. Swinton, Liquids and Liquid Mixtures, third ed., Butter-

worths, London, 1982.
[62] V.G. Privman, G.L. Trigg, Encyclopedia of Applied Physics, Wiley VCH, Berlin,

1998.
[63] J.J. Potoff, A.Z. Panagiotopoulos, J. Chem. Phys. 109 (1998) 10914.

http://dx.doi.org/10.1016/j.cpc.2013.06.020
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref1
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref2
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref3
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref4
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref5
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref6
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref7
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref8
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref9
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref10
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref11
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref12
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref13
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref14
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref15
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref16
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref17
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref18
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref19
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref20
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref21
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref22
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref23
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref24
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref25
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref26
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref27
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref28
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref29
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref30
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref31
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref32
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref33
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref34
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref35
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref36
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref37
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref38
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref39
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref40
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref41
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref42
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref43
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref44
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref45
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref46
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref47
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref48
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref49
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref50
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref51
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref52
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref53
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref54
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref55
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref56
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref57
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref58
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref59
http://www.cstl.nist.gov/srs/LJ_PURE/index.htm
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref61
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref62
http://refhub.elsevier.com/S0010-4655(13)00227-0/sbref63

	GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium
	Introduction
	GPU implementation
	Simulation details
	Results and discussion
	Conclusions
	Acknowledgments
	Supplementary data
	References

