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Extended nonlocal games
An extended nonlocal game (ENLG) is specified by:
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I A probability distribution π : X × Y → [0, 1] for alphabets X
and Y .

I A collection of measurement operators
{Pa,b,x ,y : a ∈ A, b ∈ B, x ∈ X , y ∈ Y } ⊂ Pos(R) where R
is the space corresponding to R and A,B are alphabets.
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Extended nonlocal games
An (ENLG) is played in the following manner:
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1. Alice and Bob present referee with register R.

2. Referee generates (x , y) ∈ X × Y according to π and sends x
to Alice and y to Bob. Alice responds with a and Bob with b.

3. Referee measures R w.r.t. measurement
{Pa,b,x ,y ,1− Pa,b,x ,y}. Outcome is either loss or win.
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Entangled strategies for ENLGs

For an ENLG, an entangled strategy consists of complex Euclidean
spaces R,U , and V as well as

I Shared state: σ ∈ D(U ⊗R⊗ V),

I Measurements: {Ax
a} ⊂ Pos(U), {By

b } ⊂ Pos(V).

Winning probability for an entangled strategy is given by:

p =
∑

(x ,y)∈X×Y
(a,b)∈A×B

π(x , y)

〈
Ax
a ⊗ Pa,b,x ,y ⊗ By

b , σ

〉
.
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Extended nonlocal games: Winning and losing probabilities

At the end of the protocol, the referee has:

1. The state at the end of the protocol:

σx ,ya,b ∈ D(R).

2. A measurement the referee makes on its part of the state ρ:

Pa,b,x ,y ∈ Pos(R).

The respective winning and losing probabilities are given by〈
Pa,b,x ,y , σ

x ,y
a,b

〉
and

〈
1− Pa,b,x ,y , σ

x ,y
a,b

〉
.
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Entangled values of ENLGs

For any ENLG denoted as H, the entangled value of H, denoted as
ω∗(H), represents the supremum of the winning probabilities taken
over all entangled strategies.

We may also write ω∗N(H) to denote the maximum winning
probability taken over all entangled strategies for which
dim(U ⊗ V) ≤ N, so that the entangled value of H is

ω∗(H) = lim
N→∞

ω∗N(H).
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ENLGs and steering

ENLGs are actually equivalent formulations of a particular type of
tripartite steering.

Bipartite steering was initially introduced by Schrödinger in 1936 in
an attempt to make formal the “spooky action at a distance” as
discussed in the EPR paper ¶

¶Einstein, Podolsky, Rosen (1935): Can Quantum-Mechanical Description
of Physical Reality be Considered Complete?
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Bipartite steering
Alice and Bob each receive part of a quantum state (sent by the
referee). Their goal is to determine whether this state is entangled.
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I Bob’s measurement device is “trusted“, whereas Alice’s is not:

I Outcome of Alice’s measurements are only ±1 (a conclusive
outcome) or 0 (a non-conclusive outcome).

I To demonstrate entanglement, Alice needs to “steer“ Bob’s
state by her choice of measurement.
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NLGs, ENLGs, and steering

Bipartite steering:
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untrusted parties (ENLG):
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ENLG and steering

Tripartite steering; same thing as before, only now we have three
parties where two members are untrusted and one member is
trusted.

In tripartite steering, Alice and Bob are the untrusted parties, and
the referee is the trusted party.

This isn’t a talk on steering, but it’s helpful to note that proving
something using ENLGs will also say something about a particular
type of tripartite steering.
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Quantum-classical games
A quantum-classical game (QCG) is a cooperative game played
between Alice and Bob against a referee.
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Specified by:

I A state ρ ∈ D(X ⊗ S ⊗ Y) in registers (X,S,Y).

I Collection of measurement operators
{Qa,b : a ∈ A, b ∈ B} ⊂ Pos(S) for alphabets A and B.
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Quantum-classical games
A (QCG) is played in the following manner.
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1. Referee prepares (X, S,Y) in state ρ and sends X to Alice and
Y to Bob.

2. Alice responds with a ∈ A and Bob with b ∈ B.

3. Referee measures S w.r.t. measurement {Qa,b,1− Qa,b}.
The outcome of this measurement results in “0“ or “1“,
indicating a loss or a win.
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Entangled strategies for QCGs

For a QCG, an entangled strategy consists of complex Euclidean
spaces U and V as well as

I Shared state: σ ∈ D(U ⊗ V),
I Measurements: {Aa : a ∈ A} ⊂ Pos(U ⊗X ), {Bb : b ∈ B} ⊂ Pos(V ⊗Y).

Winning probability for a entangled strategy is given by:

p =
∑

(a,b)∈A×B

〈
Aa ⊗ Qa,b ⊗ Bb,W (σ ⊗ ρ)W ∗

〉
,

where W is the unitary operator that corresponds to the natural
re-ordering of registers consistent with the tensor product
operators.
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Entangled values for QCGs

For any QCG denoted as G , the entangled value of G , denoted as
ω∗(G ), represents the supremum of the winning probabilities taken
over all entangled strategies.

We may also write ω∗N(G ) to denote the maximum winning
probability taken over all entangled strategies for which
dim(U ⊗ V) ≤ N, so that the entangled value of G is

ω∗(G ) = lim
N→∞
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Entangled values and the dimension of
entanglement
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Values and the dimension of shared entanglement

Question: Does the dimensionality of the state that Alice and Bob
share determine how well Alice and Bob perform?

Partial answer: In [Regev,Vidick (2012)] ¶, the authors showed
that there exists a specific class of QCG such that if the dimension
of Alice and Bob’s quantum system, N, is finite then ω∗N(G ) < 1,
but ω∗(G ) = 1.

What about ENLG?

¶Regev, Vidick (2012): Quantum XOR games
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Relationship between ENLGs and QCGs

Main question: Does there also exist an ENLG, H, such that
ω∗(H) = 1 and ω∗N(H) < 1 when N is finite?

I It is possible to construct an ENLG from any QCG (not
obvious).
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I From this construction, it turns out that this property also
holds for ENLG, that is, there does exist an ENLG such that
Alice and Bob can only win with certainty iff they share an
infinite-dimensional state.
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Constructing ENLGs from QCGs

General idea: Given a strategy for a QCG, G , show that it’s
possible to adapt this strategy for an ENLG, H, and vice-versa.

Approach:

I Show that for an arbitrary and fixed strategy for G , that it’s
possible to adapt this strategy for H.

I Show that Alice and Bob cannot do any better.
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Key idea (for one direction of proof)

Show that for an arbitrary and fixed strategy for G , that it’s
possible to adapt this strategy for H.

Main restriction: In G , the referee is sending quantum registers,
but in H, the referee is restricted to sending classical questions.
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Key idea: Use teleportation to transmit X and Y in game H.
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Attempt 1: Adapting via teleportation

Protocol:

1. Alice and Bob prepare ρ ∈ D(U ⊗ (X ⊗ Y)⊗ V) in registers
(U,X,Y,V) such that Alice/Ref and Bob/Ref share pairs of
maximally entangled states.

2. Referee desires to transmit states that he creates held in X′

and Y′ to Alice and Bob. To do so, he measures (X,X′) and
(Y,Y′) in the Bell basis to generate and send (x , y) to Alice
and Bob.

3. Alice and Bob complete the teleportation protocol by applying
appropriate unitaries to their system based on (x , y).

Problem: The definition of an ENLG requires that questions (x , y)
are generated randomly.
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Attempt 2: Post-selected teleportation protocol for H

Problem: Vanilla teleportation is not enough (the questions (x , y)
need to be generated independent of the state of registers (X,Y)).

Idea: Let (x , y) be selected at random, but then compare (x , y) to
hypothetical measurement results that would be obtained if the
referee were to perform teleportation.
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Post-selected teleportation protocol for H
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Step 1: Post-selected teleportation protocol for H

Alice and Bob prepare σ ∈ D(U ⊗ (X ⊗ Y)⊗ V).
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Step 2: Post-selected teleportation protocol for H

Referee randomly selects and sends (x , y); keeps a local copy. Alice
and Bob respond with (a, b).
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Step 3: Post-selected teleportation protocol for H

Referee prepares ρ ∈ D(X ′ ⊗S ⊗Y ′). Performs teleportation using
(X,X′) and (Y,Y′) resulting in outcomes (x1, y1).
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Step 4: Post-selected teleportation protocol for H

1. If x 6= x1 or y 6= y1: teleportation fails; Alice and Bob win.

2. If x = x1 and y = y1: teleportation succeeds; Referee
measures w.r.t. {Pa,b,x ,y ,1− Pa,b,x ,y}.
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Discussion
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Similar result for nonlocal games?

I Our result: There exists some ENLG such that ω∗N(H) < 1
and ω∗(H) = 1. That is, for certain ENLG, increasing
amounts of entanglement yield higher winning probabilities.

I Known result: There exists some QCG such that ω∗N(G ) < 1
and ω∗(G ) = 1. That is, for certain QCG, increasing amounts
of entanglement yield higher winning probabilities.

I Unknown: Does there exist some NLG, G , with similar
properties, that is ω∗N(G ) < 1 and ω∗(G ) = 1?
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ENLGs and tripartite steering

Recall, ENLG may be viewed equivalently as a tripartite steering
scenario.

Proving results about ENLGs gives us corresponding results about
tripartite steering. What does our result imply in the context of
steering?

Result: Our result implies the existence of a tripartite steering
inequality that is maximally violated only by a quantum state with
dimension approaching infinity. For any finite-dimensional state,
this steering inequality cannot be maximally violated.
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Further work
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Open questions

I (Hard problem): Does there exist any nonlocal game, G , such
that ω∗(G ) = 1 and ω∗N(G ) < 1 for all N?

I (More general): Can the study of extended nonlocal games
reveal anything further about the properties of tripartite
steering?
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A related question: Swapping rounds of communication

How powerful is the extended nonlocal game model? What
happens when you substitute classical for quantum rounds of
communication or vice-versa?
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Thanks

Thanks for listening!

This work is primarily based on:

• N. Johnston, R. Mittal, V. R., J. Watrous.
Extended nonlocal games and
monogamy-of-entanglement games.
Proc. R. Soc. A 472:20160003, 2016.

• V. R., J. Watrous.
Extended nonlocal games from quantum-classical games.
In preparation.
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