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Introduction

The protocol we consider consists of three major steps:

• Preparation: Alice prepares a state ρ ∈ D(X ⊗Z), and sends X to Bob.

• Action: Bob applies a quantum channel Φ to X to obtain Y, which is
sent back to Alice.

• Measurement: Alice performs a projective measurement on (Y,Z)
described by {Pa : a ∈ {0, 1}} ⊂ Pos(Y ⊗ Z).

Figure 1: A single repetition of the protocol described above.

Motivation: Understand non-locality and entanglement.
Applications: Quantum cryptographic schemes.

Background

n – Total number of repetitions.
k – Number of repetitions Bob would like to win with certainty.
p – Probability p ∈ P(Σ) of Bob winning where Σ = {1, · · · , n}.
α – We focus on the case ρ = ψψ∗, ψ = α |00〉 +

√
1− α2 |11〉.

θ – We focus on the case P1 = γγ∗, γ = cos(θ) |00〉 + sin(θ) |11〉.

For n = 2, k = 1, α = 1√
2, and θ = π/8, a specific quantum strategy [1]

exists that outperforms any classical one.

Classical

• Passing both tests : p2

• Passing at least one test :
1− (1− p)2

Quantum

• Passing both tests : p2

• Passing at least one test : 1

Question:What about perfectly hedging 1/n?
Question:Applications to more physical settings?

Notation

Choi Representation:
J(Φ) =

∑
1≤i,j≤n

Φ(|i〉 〈j |)⊗ |i〉 〈j |

Alice and Bob’s operations in the protocol are represented in
our SDPs using the Choi representation:

Alice’s Operation:
Qa =

(
1L(Y) ⊗ Ψρ

)
(Pa) ∈ Pos(Y ⊗ X ), J(Ψρ) = ρ

Bob’s Operation:
X = J(Φ) ∈ Pos(Y ⊗ X )

Generalizing the Hedging Model

The following SDP corresponds to running n repetitions of the protocol, where the optimum value is the maximum probability that Bob wins at least k = 1
out of the n repetitions.

Primal problem

minimize:
〈
Q⊗n0 , X

〉
subject to: TrY⊗n(X) = 1X⊗n,

X ∈ Pos(Y⊗n ⊗X⊗n).

Dual problem

maximize: Tr(Y )
subject to: 1Y⊗n ⊗ Y ≤ Q⊗n0 ,

Y ∈ Herm(X⊗n).
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Figure 2: An n-repetition competitive game between Alice and Bob. Alice in-
dependently prepares questions ρ⊗n ∈ D(X⊗n ⊗ Z⊗n). She sends half of the state
to Bob, where he applies a quantum channel Φ to Alice’s questions. This yields the
state Φ(ρ⊗n), labeled by σ ∈ D(Y⊗n ⊗Z⊗n). Finally, Alice measures with respect to
{Pai

: ai ∈ {0, 1}} ⊂ Pos(Y⊗n ⊗Z⊗n) and determines Bob’s victory or loss.

Winning Angle and Strategy
The winning angles (θ1, θ2) and strategies (Φ1,Φ2) can be expressed in the
following closed forms:

θ1 = tan−1

(√
1
α2 − 1

(
21/n − 1

))
,Φ1 =

∑
~r

(−1)∧~r+⊕~r |~r〉 〈~r|

θ2 = tan−1

(√
1
α2 − 1

(
1

21/n − 1

))
,Φ2 =

∑
~r

(−1)∨~r+⊕~r |~r〉 〈~r|
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Figure 3: The X-axis refers to the angle θ in Alice’s measurement, and the Y-axis refers
to the optimum value of the SDP. Perfect hedging is achieved when the optimum value
equals zero. The angles θ1 and θ2 mark the boundaries of that range, and Φ1 and Φ2 are
strategies for those angles that Bob can apply to achieve perfect hedging.

Hedging in Model with Protocol Errors

We study a variation of the prover-verifier setting where Bob has the choice to not respond to Alice in the second step of the protocol. If so, the whole
interaction is repeated until Bob returns an answer. ρ is allowed to be an arbitrary finite-dimensional quantum state, and P1 an arbitrary projective
measurement operator.

Primal problem

maximize: 〈Q1, X〉
subject to: TrY(X) ≤ 1X ,

X ∈ Pos(Y ⊗ X ).

Reduces to

Simplified Primal problem

maximize: x∗
√

(
∑

iQi)+Q1
√

(
∑

iQi)+x

x∗x
subject to: x ∈ Y ⊗ X , x ⊥ ker(

∑
i

Qi).

Hedging with Protocol Errors
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Figure 4: The red dashed lines indicate Bob’s ability to not respond.

Absence of Hedging
The value of the above SDP can be seen to correspond to the value of:∥∥∥∥∥∥∥

(∑
i

Qi

)+
1/2

Q1

(∑
i

Qi

)+
1/2

∥∥∥∥∥∥∥
∞

Using this formula and considering the case with n repetitions, perfect
hedging is shown to not to be possible in our protocol error model for any
choice of k and n.

Semidefinite Programming (SDP)

• A generalization of linear programming.
• A powerful tool with many applications in quantum information.
• SDPs are efficiently solvable (polynomial time) for many relevant

subclasses.
• Software packages are available to solve SDPs.
• Duality theory:

Primal problem

maximize: 〈A,X〉
subject to: Φ(X) = B,

X ∈ Pos(X ).

Dual problem

minimize: 〈B, Y 〉
subject to: Φ∗(Y ) ≥ A,

Y ∈ Herm(Y).

Optimum value: α β

Weak Duality Theorem: For every SDP, α ≤ β.

Open Problems

• Can a similar closed form be constructed for k/n as we’ve illustrated
for 1/n?

• Extend the protocol error model to determine if hedging occurs when
Bob has to return an answer within a fixed number of iterations.

• Develop a line of work with further generalizations of the model, similar
to the one currently ongoing for one round quantum games with two
collaborating players

Software

MATLAB scripts that implement the hedging SDPs using the CVX convex
optimization solver:
• https://bitbucket.org/vprusso/quantum-hedging
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