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We are interested in the problem of quantum correlations that arise when considering hypothet-
ical two-party interactions between Alice and Bob. In a recent work [1], the framework for these
interactions was used in the context of a game where one of the players, Bob, could use correlations
which exhibit strictly non-classical behavior to his advantage. This manifested in an ability of the
player to make use of a form of hedging, where the risk of losing a first game was eliminated by
offsetting that risk in a second game. In this paper we look at some follow-up questions to that
result. We consider whether quantum hedging is possible in a variant of the interaction model mo-
tivated by experimental concerns. In particular, we ask whether the hedging behavior still occurs
in the case when Bob is allowed to sometimes return no answer to a question, in which case the
whole experiment starts again. Additionally, we present some results concerning the existence and
amount of hedging in a game that generalizes several of the parameters of the main game studied
in [1].

I. INTRODUCTION

This paper investigates the topic of quantum strategies
in the context of a certain kind of two-player interaction.
These interactions can be viewed as a competitive game
played between players Alice and Bob, also referred to
as the verifier and prover respectively. More exactly, the
setting of the game we consider in this paper is as follows.

1. Alice prepares a question based on some predefined
probabilistic function, and sends this question to
Bob.

2. Bob applies some operation to the question, and
generates an answer which he sends back to Alice.

3. Alice then evaluates this answer on some predefined
metric based on the initial question and answer to
determine whether a win or loss is obtained.

It is assumed that Bob has complete knowledge of the
probability distribution used to determine Alice’s ques-
tion as well as the metric that she uses to determine if
Bob has won or lost the game. Therefore, Bob may adopt
a strategy prior to the start of the game based on his
knowledge of the initial setup. One may consider quan-
tum strategies, where quantum information (that might
be entangled with the memories of the players) is trans-
mitted. One might consider whether these strategies give
rise to different behaviors than classical strategies, where
only classical information (with only classical correlations
with the memories of the players) is transmitted.

This game framework provides a setting then to study
Bell-like inequality violations, with quantum strategies
yielding probability outcomes forbidden for their classical
counterparts. More famously considered by Bell [2], this
type of violations has been observed in a number of game-
like frameworks [3–8].

However, unlike in many of those frameworks, here we
do not have two parties collaborating to achieve a non-

classical outcome. Instead, we have a prover-verifier set-
ting, in which Bob is trying to convince Alice in order to
pass a test. Therefore, one can also view the games we
study in the context of prover-verifier quantum interac-
tive proof systems consisting of two rounds. In fact, the
general setting that we have considered so far corresponds
to the QIP(2) complexity class. This is a complexity
class that has been studied several times and described
as mysterious in the literature [9–12]. When analyzing
the setting of our game, it will be convenient to use the
quantum game formalism developed by Gutoski and Wa-
trous [13, 14] to describe the behavior of Alice and Bob.

A specific combination of a game and a corresponding
quantum strategy which exhibited a Bell-like inequality
violation was presented in [1]. Their example involved
running two parallel repetitions of a game where the op-
timal probability for Bob to win a single repetition is p.
In all such games where only classical information is con-
sidered, Bob can win at least one of the two games with
an optimal probability of 1− (1− p)2. In their example
involving quantum information, it was shown that Bob
is guaranteed to win one out of the two games. This
result not only exhibited a Bell-like violation, but also il-
lustrated that the technique of parallel repetition cannot
be used to achieve strong error reduction for the QIP(2)
class.

Two natural questions that arise from their analysis
is whether or not these Bell-like violations persist when
running n repetitions of the game, or when tweaking the
quantum states used in the game. In other words, when
is Bob still able to perfectly hedge one game out of n rep-
etitions by using a quantum strategy? If so, what is the
strategy that Bob uses to obtain this result? We answer
this question by establishing (for a one-dimensional fam-
ily of starting states and another one-dimensional family
of measurements by Alice) when will Bob be able to win
one game out of n parallel repetitions, along with an spe-
cific optimal quantum strategy for those cases.

ar
X

iv
:1

31
0.

79
54

v3
  [

qu
an

t-
ph

] 
 5

 M
ar

 2
01

4



2

We also consider the game when Bob has the choice to
not respond to Alice in the second step of the protocol,
with the protocol being repeated whenever this doesn’t
happen. This subtle change can be viewed as introducing
communication errors into the model. This is motivated
by experimental concerns, since in an actual experimental
setup, quantum communication between parties is prone
to various imperfections. A particularly relevant example
is the case of photon loss whenever optical-based quan-
tum information implementations are considered. A de-
cision from Bob to not respond may be viewed as such an
error in this framework. We analyze this framework and
find that hedging is not possible for any choice of initial
quantum state and evaluation procedure by Alice.

The rest of the paper proceeds as follows. We begin
with Section I A, where we cover our notation and basic
preliminaries. In Section II A, we first describe in greater
detail the setting that generalizes the game in [1] which
will be the focus in this section. We then examine the
hedging behavior necessary for Bob to win one out of
n repetitions of the game with certainty in this setting.
Then in Section II B we consider a more general setting,
but under the assumption that Bob may decide not to
return an answer, and induce a repetition of the pro-
tocol. After examining some particular cases we finally
prove that no hedging is possible in this setting. Finally,
in Section III, we re-state our results and mention con-
nections with other results and potential directions for
future work.

A. Notation

Vector spaces associated with a quantum system are
defined as complex Euclidean spaces. We denote these
spaces by the capital script letters X ,Y, and Z. The
complex vector space of linear operators of the form A :
X → Y is denoted by L (X ,Y). We write A ∈ L (X ) as a
shorthand for A : X → X . The adjoint X∗ of an operator
X ∈ L (X) is the operator such that for all u, v ∈ X ,
〈u,Xv〉 = 〈X∗u, v〉. An operator H ∈ L (X ) is Hermitian
if H = H∗. We write Herm (X ) to denote the set of
all Hermitian operators. The inner product 〈A,B〉 =
Tr(AB) between two operators A,B ∈ Herm (X ) is real
and satisfies 〈A,B〉 = 〈B,A〉. All the eigenvalues of a
Hermitian operator A are real. If an operator P ∈ L (X ),
P ∈ Herm (X ), and all eigenvalues of P are non-negative,
then we call P positive semidefinite, and refer to all such
operators as P ∈ Pos (X ). If A,B ∈ Herm (X ), we also
use the notation A ≥ B and B ≤ A to indicate that
A − B ∈ Pos (X ) and B − A ∈ Pos (X ), respectively. If
some operator P ∈ Pos (X ) and Tr(P ) = 1, then P is said
to be a density operator, and is referred to as P ∈ D (X ).
We will often represent such operators in D (X ) as lower
case Greek letters ρ, σ, τ , etc. We adopt the convention of
writing 1X as opposed to 1 to indicate that the identity
is acting on the space X when convenient to do so.

We also consider linear mappings of the form Φ :

L (X ) → L (Y). The space of all such mappings is de-
noted as T (X ,Y). For each Φ ∈ T (X ,Y), a unique
adjoint mapping Φ∗ ∈ T (Y,X ) is defined as

〈Y,Φ(X)〉 = 〈Φ∗(Y ), X〉 , ∀X ∈ L (X ) ,∀Y ∈ L (Y) .

Throughout this work, we define quantum states by the
set of density operators ρ ∈ D (X ) which reside in some
complex Hilbert space X . Associated with the space X
one may consider a register denoted X in which the state
ρ is contained. We consider measurements of a register,
X, as being described by a set of positive semidefinite
operators {Pa : a ∈ Σ} indexed by a finite non-empty set
of measurement outcomes which satisfies the constraint∑
a∈Σ Pa = 1X . By performing a measurement on X

in state ρ, the outcome a ∈ Σ results with probability
〈Pa, ρ〉. Without loss of generality, we could also consider
a set of n quantum states {ρ1, ρ2, · · · , ρn} stored across
n registers {X1,X2, · · · ,Xn}. We can describe the joint
state of this system by a density operator σ ∈ D (X1···n)
where (X1···n) is shorthand for (X1 ⊗X2 ⊗ · · · ⊗ Xn).

We define a quantum channel as a linear mapping
Φ : L (X )→ L (Y) which is completely positive and trace
preserving. A channel transforms some state ρ stored
in register X into the state Φ(ρ) of another register Y.
The set of all channels is denoted by C (X ,Y), and is a
compact and convex set. Note that the channel corre-
sponding to an unitary operator U is the one that maps
a quantum state σ to UσU∗.

For spaces X and Y, one may define the Choi repre-
sentation of an operator Φ ∈ T (X ,Y) as

J(Φ) =
∑
i,j

Φ (|i〉 〈j |)⊗ |i〉 〈j | ,

where J : T (X ,Y) → L (Y ⊗ X ). The Choi represen-
tation has a number of interesting qualities, but there are
three specific properties which will be useful to us. The
first is that the mapping Φ is completely positive if and
only if J(Φ) ∈ Pos (Y ⊗ X ). The second is that the map-
ping Φ is trace preserving if and only if TrY(J(Φ)) = 1X .
The third is that Φ(Z) = TrX

[
J(Φ)

(
1Y ⊗ ZT

)]
. We re-

fer the reader to [15] for further details on the notation.

II. ANALYSIS OF THE HEDGING MODEL

A. General hedging model

A formal description of the game setting we consider
in this section is the following setup:

1. Alice prepares her question as a pair of qubits in
registers (X,Z) in an entangled state

u = α |00〉+
√

1− α2 |11〉 ∈ L (X ⊗ Z) , (1)

where α ∈ (0, 1], and she sends X to Bob. We
denote uu∗ = ρ ∈ D (X ⊗ Z) as the density matrix
corresponding to this initial state.
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2. Bob applies a quantum channel, Φ, to X, which
yields the content of Y. We have now two qubits in
the pair of registers (Y,Z), with σ ∈ D (Y ⊗ Z) as
the corresponding state.

3. Alice performs a projective measurement {P0, P1}
on (Y,Z) corresponding to outcomes {0, 1} where
P1 = vv∗ for

v = cos(θ) |00〉+ sin(θ) |11〉 ∈ L (Y ⊗ Z) , (2)

and P0 = 1− P1. The value ‘0’ corresponds to the
losing outcome and the value ‘1’ corresponds to the
winning outcome for Bob.

This is a generalization of the game analyzed in [1],

where α = 1/
√

2 and θ = π/8.
One can imagine running n repetitions of this protocol

in parallel as is illustrated in Figure 1. In this setting,
Bob applies his quantum channel, Φ ∈ C (X1···n,Y1···n),
to the combined state that Alice prepares, which yields
Bob’s response Φ(ρ⊗n) = σ ∈ D (Y1···n ⊗Z1···n). Alice
then performs a series of n projective measurements on σ
with respect to the operators {Pa} for a ∈ {0, 1}, which
give n outcomes of either ‘0’ or ‘1’. Since Bob’s actions
are not required to respect the independence of the mea-
surements, this may cause a correlation to arise in the n
measurement outcomes.

In the situation that concerns us here, Bob’s goal, once
n repetitions in parallel are considered, is to obtain the
‘1’ outcome in at least 1 repetition. In particular, we
are interested in when it is useful for Bob to cause cor-
relations that arise between the n measurements by not
playing independently in the n repetitions. Note that if
Bob’s goal was to obtain outcome ‘1’ in all repetitions,
it is proved in [13] that it is optimal for Bob to play
independently in each of the repetitions.

As shown in [1], and previously in a more general set-
ting in [13], it is possible to define operators {Qa} such
that the probability of obtaining outcomes (a1, . . . , an)
in the games corresponding to {Z1, . . . ,Zn} is given by:

p(a) = 〈Qa1 ⊗ . . .⊗Qan , J(Φ)〉 , (3)

where Qa is an operator that depends on the initial
state ρ held by Alice, and the measurement Pa performed
by Alice at the end of the protocol. More precisely, let
Ψρ ∈ L (Z,X ) be the mapping such that J(Ψρ) = ρ.
Then Qa is given by (1L(Y) ⊗Ψρ)Pa.

It follows from this and the facts in I A involving
quantum channels and the Choi representation, that
this setting can be described in terms of a semidefinite
program (SDP) where the optimum value corresponds
to Bob’s probability of winning. In particular, we can
define an SDP that corresponds to playing n repetitions
of the game, where the optimum value corresponds to
the minimum probability that Bob will lose all of the n
games.

ρ

ρ

...

ρ

{Pa}

{Pa}

...

{Pa}

Φ

...
...

...

Z1

Z2

Zn

X1

X2

Xn

Y1

Y2

Yn

FIG. 1. A competitive game between Alice and Bob of the kind we

consider where n repetitions of the game are carried out independently.

Alice independently prepares her questions ρ⊗n ∈ D (X1···n ⊗ Z1···n)

in each of the n games played. She sends half of the state to Bob, where

he applies a quantum channel to the set of Alice’s questions Φ(ρ⊗n) = σ

which yields Bob’s response labelled by the σ ∈ D (Y1···n ⊗ Z1···n)

state. Bob sends σ back to Alice where she measures with respect to

projective measurement operators {Pa}, yielding n outcomes of either

‘0’ or ‘1’ which correspond to either losses or wins for Bob respectively.

Primal problem

minimize:
〈
Q⊗n0 , X

〉
subject to: TrY1···n(X) = 1X1···n ,

X ∈ Pos (Y1···n ⊗X1···n) .

(4)

Dual problem

maximize: Tr(Y )

subject to: 1Y1···n ⊗ Y ≤ Q⊗n0 ,

Y ∈ Herm (X1···n) .

(5)

It can be also noted that strong duality holds for the
above SDP, by choosing the primal and dual feasible so-
lutions (X,Y ) for the application of Slater’s theorem as
a scalar multiple of the identity.

Our contribution in this section is to firstly determine
for fixed n and α the range of the angle, θ, which char-
acterizes the projective measurements for which perfect
hedging occurs (i.e. Bob can win 1 out of n parallel rep-
etitions). We also determine a strategy, Φ, that Bob can
apply to obtain the perfect hedging situation. Secondly
we look into the regions where perfect hedging is not
possible and present a strategy which seems to give Bob
an optimal probability to win 1 out of n games in those
regions.

In [1], they consider a case where Bob wins 1 out of 2

games with certainty for θ = π/8 and α = 1/
√

2 and give
a corresponding strategy that results in perfect hedging.
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Our primary result here generalizes this to any θ where
1 out of n hedging occurs for arbitrary n and α.

Theorem 1. The angles which completely character-
ize Alice’s rank-1 projective measurements {P0, P1} for
which perfect hedging is achieved by Bob to win 1 out of
the n games contain the range θ ∈ [θ1, θ2] for

θ1 = tan−1

(√
1

α2
− 1

(
21/n − 1

))
,

θ2 = tan−1

(√
1

α2
− 1

(
1

21/n − 1

))
,

(6)

where the trigonometric domain is restricted to θ ∈
[0, π/2].

The example from [1] illustrated perfect hedging when
θ1 = π/8, n = 2, and k = 1. We obtain this angle as
well from Theorem 1, but also that perfect hedging can
be attained for this setting up to θ2 = 3π/8. It can be
noted that, as the number of games n increases, the prob-
ability that Bob wins also increases. Within this region,
irrespective of the initial entangled state prepared, the
value of this game is the same since Bob has a strategy
to win 1 out of n repetitions. The proof of Theorem 1
follows immediately from Lemma 3 and Lemma 4.

Corollary 2. Perfect hedging occurs for the largest
range, θ, when Alice initially prepares a maximally en-
tangled state.

Proof. The proof for the corollary follows from directly
maximizing θ2 − θ1 over all α

max
α

[
tan−1

(√
1

α2
− 1

(
1

21/n − 1

))
−

tan−1

(√
1

α2
− 1

(
21/n − 1

))] (7)

by taking the derivate with respect to α, and observing
that the maximum occurs for all n at α = 1/

√
2, or,

equivalently, when the state is maximally entangled.

We elaborate over an optimal choice for Bob of the
channel Φ that he applies to the part of the state he
receives from Alice in the following lemmas:

Lemma 3. For angles θ1 and θ2 as defined in Theorem 1,
Bob’s strategies for winning 1 out of n games can be de-
fined as Φ1 and Φ2 corresponding to unitary operations:

Φ1 :
∑
~r

(−1)∧~r+
⊕
~r |~r〉 〈~r| ,

Φ2 :
∑
~r

(−1)∨~r+
⊕
~r |~r〉 〈~r| ,

(8)

where ~r ∈ {0, 1}n, and ∧~r,∨~r, and
⊕
~r refer to the logical

AND, OR, and XOR of the bits of ~r respectively.

This shows the existence of strategies {Φ1,Φ2} for Bob
at {θ1, θ2} that achieve a value of 0 for the SDP, and the
next lemma proves that for all points within these two
bounds there exists a strategy as well. Note that these
strategies Φ1 and Φ2 do not depend on α. Also, note
that in the case when n = 2, Bob’s strategy Φ1 on the
two qubits that he receives corresponds to the unitary:

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (9)

which is similar to the strategy defined in [1] up to a
global phase. The proof of this lemma has been deferred
to Appendix A 1.

Lemma 4. In the scenario where the projective mea-
surements are parametrized by θ ∈ [θ1, θ2] for θ1 and θ2

defined as in Theorem 1, Bob can apply the strategy cor-
responding to the following unitary operator to achieve
perfect hedging for 1 out of n games.

(−1)n|~0〉〈~0| − |~1〉〈~1|+
n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

(−1)n+ik~r |~r〉 〈~r| ,

(10)
where |~r| computes the sum of the bits of ~r

|~r| =
n−1∑
i=0

~ri, (11)

and for a fixed choice of |~r| = i, k~r defines the following
piecewise function

k~r =



β for
⌊(
n
i

)
/2
⌋

of the possible choices of ~r,

β for
⌊(
n
i

)
/2
⌋

of the possible choices of ~r,

−1 for the remaining choice of ~r when
(
n
i

)
is odd and tan(θ) ≥

√
1
α2 − 1,

1 for the remaining choice of ~r when
(
n
i

)
is odd and tan(θ) <

√
1
α2 − 1,

where β = s+ i
√

1− s2 refers to a point on the complex
unit circle, and s is a parameter dependent on θ, α and
n.

Since Bob has complete knowledge of the game, for any
θ ∈ [θ1, θ2], Bob can apply the strategy corresponding
to the angle θ selected. Note that it’s clear that the
optimal strategies Bob can apply are not unique, since
our definition doesn’t uniquely specify which coefficients
k~r correspond to which values of ~r. The proof of this
lemma has been deferred to Appendix A 2.

We have thus far considered the case when perfect
hedging is possible. The following result, observed when
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running experiments in MATLAB, and for which we
present a proof approach in Appendix A 2, deals with
characterizing the scenario when perfect hedging is not
possible, and provides a corresponding strategy for Bob
to play optimally.

Result 5. For regions corresponding to θ ∈ [0, θ1) ∪
(θ2, π/2] hedging does not occur, and the strategies Φ1

and Φ2 mentioned in Lemma 3 are respective optimal
strategies for Bob.

It is interesting to note that the strategy Bob adopts is
independent of the parameter θ, implying that the strat-
egy is optimal regardless of the projective measurements
chosen by Alice when perfect hedging is not possible.
The optimal probability with which Bob can win for a
given α appears in Appendix A, and is minimized for
θ = {0, π/2}. These cases simply correspond to a stan-
dard basis measurement done by Alice, and Bob has a
probability of (1−α2)n and α2n for winning, respectively.
It can also be observed then from our results that a uni-
tary (and in fact, a diagonal in the computational basis)
strategy is sufficient for Bob to win with optimal proba-
bility in the entire interval of Alice’s projective measure-
ments parametrized by θ ∈ [0, π/2].

We point the reader to [16] for MATLAB code which
solves the SDPs for the situation we analyze, using the
CVX convex optimization package [17].

B. Hedging model with protocol errors

We consider in this section a variation of the prover-
verifier setting where Bob has the choice to not respond
to Alice in the second step of the protocol. Bob might
want to do this whenever using his complete knowledge
of the game he can predict an answer will result in a loss.
If an answer is not obtained, the game is repeated again,
and this goes on until an answer is returned from Bob. To
see how this variation produces nontrivial changes on the
result of an interaction, consider the following interaction
where Bob is always forced to return an answer:

1. Alice prepares the maximally entangled state
1√
2
|00〉 + 1√

2
|11〉 and sends the second qubit to

Bob.

2. Bob responds by sending a qubit to Alice.

3. Alice ignores Bob’s answer, and measures the qubit
she kept with respect to the projective measure-
ment {P0, P1}, where P0 = |1〉 〈1| and P1 = |0〉 〈0|.

It is clear that the maximum probability with which
Bob can pass this test is 50%. This follows from the fact
that the actions of Bob cannot alter the reduced state
that Alice holds, and the outcome of the interaction de-
pends only on this state. However, the situation changes
drastically when Bob is allowed to return no answer in
the second step. In that case, consider the situation when

Bob chooses to perform a measurement using the com-
putational basis on the qubit he receives. If he obtains
the outcome corresponding to P1, he will return an an-
swer, and otherwise he won’t. The entanglement between
the qubit that Alice keeps and the one that Bob receives
guarantees then that the outcome of the interaction will
always be the successful one.

We will assume in our analysis that Bob always has
a nonzero chance of winning a single repetition. Indeed,
if this were not the case, the question of whether or not
hedging occurs would be uninteresting. This is because
the probability of winning k out of n repetitions for Bob
would always be zero. Otherwise, Bob could play a single
game and simulate n − 1 additional repetitions in such
a way that there would be a non vanishing chance of
winning the single ”real” game, and therefore a contra-
diction.

To start our analysis, we observe that if we allow Bob
to not give an answer, but do not repeat the interac-
tion upon a failure to obtain an answer, the semidefinite
programming formulation in [1] tells us that the optimal
probability of achieving outcome a ∈ {0, 1} for Bob is
given by the value of:

Primal problem

maximize: 〈Qa, X〉
subject to: TrY(X) ≤ 1X ,

X ∈ Pos (Y ⊗ X ) ,

(12)

where Qa is defined as in (3).
To consider the fact that the interaction is repeated

whenever an answer is not received, we divide the ob-
jective function by the probability that an answer is re-
turned. This assumes that we can ignore previous repeti-
tions of the interaction, which is justified by the fact that
the repeated interactions occur in series. Because of this,
the way in which previous repetitions would be taken into
account would be with an additional input for Bob corre-
sponding to his memory after the previous rounds of the
protocol. But the fact that there is no computational re-
striction on Bob, and he is aware of the protocol followed
by Alice, means that for any possible value of that input,
Bob could just simulate the procedure used to generate
it, so the input is not needed, and we can ignore previous
interactions.

Note that this implies that it is optimal for Bob to
return an answer with nonzero probability, since we are
assuming that this can win with nonzero probability.

The probability that an answer is returned is just the
trace of the state after Bob returns an answer, which is a
linear function of the variable X in the previous problem.
In particular, the probability is given by 〈E,X〉, where

E =
∑
i

Qi =
∑
i

(
1L(Y) ⊗Ψρ

)
(Pi)

=
(
1L(Y) ⊗Ψρ

)
1Y⊗Z = 1Y ⊗ TrZ(ρ),

(13)
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and the last step uses the formula

Ψρ(Z) = TrZ
[
J(Ψρ)

(
1X ⊗ ZT

)]
. (14)

Note that since
∑
iQi = E, we have that Qa ≤ E.

We have then that the optimal probability for Bob to
obtain outcome a in the model we consider is given by:

Primal problem

maximize:
〈Qa, X〉
〈E,X〉

subject to: TrY(X) ≤ 1X ,

X ∈ Pos (Y ⊗ X ) , 〈E,X〉 6= 0.

(15)

We use now the same analysis as in [18] to obtain a
more explicit form for this value. We begin by noticing
that scaling a solution, X, by a nonzero constant will not
change the value of the objective function. We can then
get rid of the TrY(X) ≤ 1X constraint. We achieve then
the problem:

Primal problem

maximize:
〈Qa, X〉
〈E,X〉

subject to: X ∈ Pos (Y ⊗ X ) , 〈E,X〉 6= 0.

(16)

At this point, we can additionally assume that X cor-
responds to a pure state. To see this, consider an X that
corresponds to a mixture of two solutions, X1 and X2.
Then, the value of the objective function will be

〈Qa, X1〉+ 〈Qa, X2〉
〈E,X1〉+ 〈E,X2〉

≤ max

(
〈Qa, X1〉
〈E,X1〉

,
〈Qa, X2〉
〈E,X2〉

)
,

(17)

where the inequality follows from the fact that all val-
ues involved in the expression on the left hand side are
positive. We then obtain the problem:

Primal problem

maximize:
x∗Qax

x∗Ex
subject to: x ∈ Y ⊗ X , x∗Ex 6= 0.

(18)

Now, note that we can assume without loss of gener-
ality that a solution x is contained within the span of
the support of E. Also, within this domain, (E+) is the
Moore-Penrose pseudo-inverse [15]. Therefore, we can
go ahead with replacing x by (E+)1/2x in the objective
function, obtaining then the equivalent problem:

Primal problem

maximize:
x∗(E+)1/2Qa(E+)1/2x

x∗x
subject to: x ∈ Y ⊗ X , x ⊥ ker(E),

(19)

which has the value ‖(E+)1/2Qa(E+)1/2‖.
We have obtained a closed formula for the optimal

probability of winning for Bob in a single interaction.
Consider now then the case when Bob wants to be suc-
cessful in at least one of two parallel interactions where
Alice acts independently. In this case, the same calcula-
tion that we did before gives us that this optimal proba-
bility is:∥∥∥((E+)1/2 ⊗ (E+)1/2

)
(Q1−a ⊗Qa +Qa⊗

Q1−a +Qa ⊗Qa)
(

(E+)1/2 ⊗ (E+)1/2
)∥∥∥. (20)

This can also be written as∥∥∥((E+)1/2 ⊗ (E+)1/2
)

(E ⊗ E −Q1−a ⊗Q1−a)(
(E+)1/2 ⊗ (E+)1/2

)∥∥∥. (21)

Since the quantity inside of the norm in equation (21)
appears frequently in our analysis, we denote this quan-
tity as

Λ =
(

(E+)1/2 ⊗ (E+)1/2
)

(E ⊗ E −Q1−a ⊗Q1−a)(
(E+)1/2 ⊗ (E+)1/2

)
. (22)

throughout the rest of this section.
Note that one can assume that the initial state ρ cor-

responds to a pure state. The reason is because given
a protocol with an initial state ρ, we can easily mod-
ify it so that Alice prepares a purification of that state
instead, and just ignores the added qubits when perform-
ing the final measurement. Using this, one can derive an
interesting fact about this model, which is that at least
whenever one restricts Bob to perform a rank-one mea-
surement, the optimal success probability for Bob does
not depend on the Schmidt coefficients of the starting
state.

This can be proved by letting the initial state that
Alice holds be given by

∑
i

√
piai⊗ bi, and the state cor-

responding to Bob’s projection by
∑
i

√
qici ⊗ di. Then,

if one performs the correspond algebraic manipulations
it is possible to obtain that the optimal probability of
winning for Bob in a single parallel repetition is:

∥∥∥ ∑
i,j,k,l

√
qjqlb

∗
i dld

∗
j bkaiak

∗ ⊗ cjc∗l
∥∥∥

which has no dependence on the pi.
This suggests that the example we gave at the begin-

ning of this section might capture all the additional power
Bob has in this model. In particular, it suggests that an
optimal strategy for Bob might always consist of per-
forming an orthogonal measurement on the qubits he is
given, and then refusing to give an answer except when
he obtains the “best” outcome.
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As for our main subject of concern here (quantum
hedging), it turns out that in the model we just described
it is not possible for quantum hedging to exist. We will
proceed to illustrate a simple proof of this in two partic-
ular cases, and then finish with a general proof .

1. Absence of hedging for the protocol in [1]

It is easy to establish that in a generalization of the ex-
ample considered in [1], the hedging behavior disappears
once Bob can avoid returning an answer. This gener-
alization corresponds to the set of protocols where the
initial quantum state shared between Alice and Bob is
a pure state, ψ, such that TrX (ψψ∗) = 1Z/ dim(Z). It
suffices to prove this for one of such states, as the other
ones can be obtained from it by Bob applying a unitary.
In particular, we will prove it for the pure state

ψ =
1√

dim(X )

∑
i

xi ⊗ xi, (23)

with dim(X ) = dim(Z), and xi being the computational
basis for X .

The reason no hedging behavior is possible is because
in this situation, it is always possible for Bob to make sure
he obtains the desired outcome. To see this, notice that
the operator that we apply to get Qa from Pa is the iden-
tity divided by dim(X ). Similarly, E = 1X⊗Y/ dim(X ).
Therefore, (E+)1/2Qa(E+)1/2 = Pa. As this is a projec-
tor into a non-empty space (from the assumption that
Bob has a nonzero probability of obtaining the desired
outcome), the norm of this operator is 1.

2. Absence of hedging in the classical case

We look now at the behavior where the information
exchanged between Alice and Bob is classical. This is
reflected in the operators we consider in our model being
diagonal. In particular, ρ and Pa are diagonal matrices.
As ρ is a diagonal matrix, then Ψρ maps diagonal matri-
ces to diagonal matrices, and it is not hard to see that E
is a diagonal matrix, and so are the Qa.
Then, if we denote by Ω(E) the matrix that has a one
in a position whenever the corresponding entry of E is
nonzero, and a zero otherwise, we have that:

‖Λ‖ =
∥∥∥Ω(E)⊗ Ω(E)−

(
(E+)1/2 ⊗ (E+)1/2

)
(Q1−a ⊗Q1−a)

(
(E+)1/2 ⊗ (E+)1/2

)∥∥∥. (24)

Now, whenever Ω(E) has a zero entry,(
(E+)1/2 ⊗ (E+)1/2

)
(Q1−a ⊗Q1−a)

(
(E+)1/2 ⊗ (E+)1/2

)
has a zero entry as well in that position, as Q1−a ≤ E.
We define now λE(X) as the minimum entry of a
diagonal matrix X, restricted to the positions where E
has a nonzero entry. We have then that the value of the

game of the game when Bob is trying to win one out of
two parallel repetitions is given by:

1− λE
(

(Q1−a ⊗Q1−a)
(

(E+)1/2 ⊗ (E+)1/2
)

(
Q1−a ⊗Q1−a

))
= 1− λE

(
(E+)1/2Q1−a(E+)1/2

)2

.

(25)
Since we have that

Ω(E) = (E+)1/2E(E+)1/2

= (E+)1/2(Qa +Q1−a)(E+)1/2

= (E+)1/2Q1−a(E+)1/2 + (E+)1/2Qa(E+)1/2

(26)
we have then that the value of the game when Bob is
trying to win one out of two parallel repetitions is given
by:

λE = 1− ‖(E+)1/2Qa(E+)1/2‖. (27)

Therefore, there is no hedging in the classical case.

3. General proof

We now want to obtain∥∥∥((E+)1/2 ⊗ (E+)1/2
)

(E ⊗ E −Q1−a ⊗Q1−a)(
(E+)1/2 ⊗ (E+)1/2

)∥∥∥. (28)

For simplicity, we define the following operators

A = (E+)1/2Qa(E+)1/2, (29)

B = (E+)1/2E(E+)1/2. (30)

We can use the fact that Q1−a = E − Qa to write the
above expression in terms of A and B as

∥∥∥A⊗B +B ⊗A−A⊗A
∥∥∥ (31)

Now, [Qa, (E
+)E] = 0, and [A,B] = 0 as (E+)E is equal

to the identity on the support of E and zero outside it,
and Qa ≤ E, so E+EQa = QaE

+E = Qa. We have then

[A⊗A,A⊗B +B ⊗A] = 0, (32)

Using that the infinity norm of a product of commuting
Hermitian matrices is the product of infinity norms we
can then write

∥∥∥((E+)1/2 ⊗ (E+)1/2
)

(E ⊗ E −Q1−a ⊗Q1−a)(
(E+)1/2 ⊗ (E+)1/2

)∥∥∥ = −‖A‖2 + 2‖B‖‖A‖.
(33)
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As ‖B‖ = 1, the value of the SDP for playing two
repetitions reduces to

− ‖A‖2 + 2‖A‖ = 1− (1− ‖A‖)2, (34)

which implies that an optimal behavior is playing each
game independentely, with no hedging behavior occur-
ring.

This proof can be easily extended to the case when
Bob is trying to win k out of n games. If Bob wishes
to win k out of n games, the same derivation as in (21)
would lead us to

∥∥∥(
√
E+)⊗n

(
E⊗n −

k−1∑
t=0

πt
(
Q⊗n−t1−a ⊗Q⊗ta

))
(
√
E+)⊗n

∥∥∥
(35)

where πt(x) refers to a sum over all the unique
(
k
t

)
permutations of x. In the same way as for k = 1, n = 2,
we can express Q1−a as E − Qa, and thus reduce the
operator inside the norm in the above expression to a
sum of tensor products of A and B. As [A,B] = 0, we
reduce the above expression then to

‖B‖ −
k−1∑
t=0

(
n

t

)
‖A‖t

n−t∑
r=0

(
n− t
r

)
(−1)n−t−r‖B‖r‖A‖n−t−r

= 1−
k−1∑
t=0

(
n

t

)
‖A‖t

n−t∑
r=0

(
n− t
r

)
(−1)n−t−r‖A‖n−t−r

= 1−
k−1∑
t=0

(
n

t

)
‖A‖t(1− ‖A‖)n−t.

(36)
It can be seen then that in this setting no quantum

advantage can be obtained by correlating Bob’s strategies
between several of the protocol repetitions in the presence
of protocol errors.

III. DISCUSSION

In this paper, we have analyzed a specific prover-
verifier interaction in which certain circumstances allow
the verifier to use a hedging strategy to win one of two
parallel repetitions with a higher probability than would
have been possible had a classical strategy been adopted.
This interesting phenomenon was originally described in
[1], where the authors used a semidefinite program to
describe the setup of the game, and illustrated an ex-
plicit example of hedging when two repetitions of the
game were carried out. In this example it is indeed pos-
sible to achieve a perfect hedging situation, where one
out of two repetitions can be won with certainty. It was
previously unknown how does this perfect hedging phe-
nomenon generalize to the case when n repetitions of the
game are performed. We resolved this question, and also
provided a complete closed form strategy for Bob that is

optimal with respect to winning at least one out of the n
parallel repetitions in this setting.

We also analyzed a variant of this setting when Bob
is not obligated to return an answer back to Alice. In
a practical sense, Bob’s refusal to respond to Alice can
be viewed in terms of an experimental setup where the
lack of a response can be viewed as a protocol error in
the model. This consideration led to an entirely different
semidefinite program that characterized the interaction
between Alice and Bob. We then used this SDP to con-
sider our framework under a number of different settings,
and asked whether or not Bob still had the ability to take
advantage of the hedging behavior.

While we have considered this hedging behavior in a
number of settings, there are still some obvious ques-
tions remaining. As mentioned, we have characterized
the setup that allows Bob to win 1 out of n repetitions
in a framework that generalizes the game in [1]. How-
ever, it still remains open to determine the conditions
under which Bob can perfectly hedge k out of n repeti-
tions for some k > 1. It would be interesting to deter-
mine the threshold of k for which perfect hedging occurs,
and to also provide a characterization in regards to the
strategy that Bob uses to achieve this result. Running
numerical instances for higher values of k and n using
a simple formulation in cvx quickly becomes computa-
tionally infeasible, as can be observed from the software
we’ve provided in [16]. It’s possible that this code could
be optimized to consider further cases, and perhaps lead
to intuition regarding the characterization for k out of
n repetitions. Based on our current numerical evidence,
it is possible that Bob cannot perfectly hedge more than
k = n/2 games.

One could also further consider the setting in which
protocol errors are introduced into the model. Here,
we’ve assumed that Bob is not forced to return an an-
swer back to Alice, and in the scenarios we’ve presented,
found that hedging does not occur. In our analysis, it’s
possible for Bob to delay returning an answer as long as
he desires. An obvious follow-up question then is to de-
termine whether hedging behavior is possible when this
is not the case. One might restraint Bob to behaviors
where on average he will return an answer within a fixed
number of iterations, or introduce constraints be of the
form “After X iterations, Bob’s probability of having re-
turn an answer must be at least equal to Y”. A special
case of those constraints that might be particularly inter-
esting is when Bob is required to return an answer within
a fixed number of iterations.

It’s also worth noting that the problem of conclusive
state exclusion, which was recently considered in [19],
bears a strong resemblance to the interaction we’ve ana-
lyzed in this work. In their paper, the PBR game, orig-
inally formulated in [20], was analyzed in terms of an
semidefinite program. Many of the mathematical results
we’ve shown in this work are analogous to the ones in
[19], specifically equations (6) and (8) as well as the op-
timal probabilities in Result 5. It would be interesting to
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further investigate games of this variety to determine if a
more general theory of such games could be formulated.
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Appendix A: Proofs of theorems and lemmas

1. Proof of Lemma 3

Proof. Given that n repetitions of the test are administered, our claim states that Bob will win at least one out of the
n tests if he adopts Φ1 as his strategy when the projective measurement made by Alice corresponds to the parameter
θ1. A similar argument also holds for Φ2 at the corresponding angle θ2. We prove this explicitly for the strategy Φ1,
and the other case follows using the same argument. Before we present the proof, note that the Choi representations
of the linear mappings Φ1 and Φ2 can be verified to refer to valid completely positive and trace preserving maps.
The proof of this lemma uses a technique of preconditioning, where, given a state σ returned by Bob after applying
Φ1, we consider the resulting state after he loses a game after Alice’s projective measurement, and the corresponding
probability. This preconditioning has depth n since we are playing n games in parallel, and therefore have n projective
measurement outcomes. To finish the proof, we set this probability to zero, and solve for θ in the resulting equation.

First, let us define the pure states:

|ψ1〉 = cos(θ) |00〉+ sin(θ) |11〉 ,
∣∣ψ1

0

〉
= sin(θ) |00〉 − cos(θ) |11〉 ,∣∣ψ2

0

〉
= sin(θ) |10〉+ cos(θ) |01〉 ,

∣∣ψ3
0

〉
= cos(θ) |10〉 − sin(θ) |01〉 ,

(A1)

where we recall from Section II A that v = |ψ1〉 ∈ Y ⊗ Z is the state which corresponds to the winning projective
measurement (P1 = vv∗) outcome of Alice, and

∣∣ψ1
0

〉
,
∣∣ψ2

0

〉
,
∣∣ψ3

0

〉
∈ Y ⊗Z are the states that correspond to the losing

projective measurement
(
P0 =

∣∣ψ1
0

〉 〈
ψ1

0

∣∣+
∣∣ψ2

0

〉 〈
ψ2

0

∣∣+
∣∣ψ3

0

〉 〈
ψ3

0

∣∣) outcome for Bob. Bob is trying then to transform
the state given by Alice to |ψ1〉, and avoid the losing outcome.

We now explicitly run through a full instance of this test. We have that the initial state is u⊗n, where u is defined
in equation (1), and the state after Bob applies his channel is:

∣∣φ0
f

〉
=

 ∑
~r∈{0,1}n

(−1)∧~r+
⊕
~r |~r〉 〈~r| ⊗ 1Z1...n

 ∑
a∈{0,1}n

n−1⊗
i=0

α1−ai(1− α2)ai/2
∣∣∣aYi+1

i a
Zi+1

i

〉
, (A2)

where aYi
i corresponds to the qubit returned by Bob, and aZi

i corresponds to the qubit kept by Alice.
We shall condition now on Bob losing the first game, and consequently, analyze the remaining games. It should

be noted that since Alice starts with the entangled state u⊗n and Bob performs a unitary diagonal operation, then
the states

∣∣ψ2
0

〉
or
∣∣ψ3

0

〉
in equation (A1) do not contribute to the losing projective measurement outcome. Given our

preconditioning, after the first game the resulting state is a normalization of

∣∣φ1
f

〉
=
(∣∣ψ1

0

〉 〈
ψ1

0

∣∣⊗ 12n−2

) ∣∣φ0
f

〉
=
∣∣ψ1

0

〉
⊗

α sin(θ)

 ∑
~r∈{0,1}n−1

(−1)
⊕
~r |~r〉 〈~r| ⊗ 1Z2...n

 ∑
a∈{0,1}n−1

n−1⊗
i=0

α1−aj (1− α2)aj/2
∣∣∣aYi+2

j a
Zi+2

j

〉
+
∣∣ψ1

0

〉
⊗

√1− α2 cos(θ)

 ∑
~r∈{0,1}n−1

(−1)∧~r+
⊕
~r |~r〉 〈~r| ⊗ 1Z

 ∑
a∈{0,1}n−1

n−1⊗
i=0

α1−aj (1− α2)aj/2
∣∣∣aYi+2

j a
Zi+2

j

〉 .

(A3)

with the associated probability being Tr
(∣∣∣φ1

f

〉〈
φ1
f

∣∣∣).

Generalizing this to Bob losing all n games, one can observe that the −1’s for the cos(θ) term in
∣∣φ1

0

〉
cancel the

(−1)
⊕
~r term, and (A3) generalizes to:

∣∣φnf 〉 =
∣∣ψ1

0

〉⊗n (
αn sinn(θ) + (αn−1

√
1− α2)n sinn−1(θ) cos(θ) + . . .

+ (α(1− α2)(n−1)/2)n cosn−1(θ) sin(θ)− (1− α2)n/2 cosn(θ)
)
.

(A4)

In order for Bob to ensure he wins at least 1 out of the n games with certainty, we require then the condition∥∥∥∣∣∣φnf〉∥∥∥ = 0, which implies:
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(α sin(θ) +
√

1− α2 cos(θ))n − 2(1− α2)n/2 cosn(θ) = 0. (A5)

This implies that for θ = tan−1
(√

1
α2 − 1

(
21/n − 1

) )
, the strategy corresponding to Φ1 gives us a perfect hedging

strategy. Following the same procedure, using the strategy corresponding to Φ2 yields the similar condition that:

(α sin(θ) +
√

1− α2 cos(θ))n − 2αn sinn(θ) = 0, (A6)

giving us θ = tan−1
(√

1
α2 − 1

(
1

21/n−1

))
.

2. Proof of Lemma 4

Proof. As in the previous proof to win at least 1 out of n games, Bob needs to avoid the outcome corresponding to

the state
∣∣ψ1

0

〉⊗n
(other states for the losing outcome can be ignored since Bob’s strategy corresponds to a diagonal

matrix). Let us now define a matrix

D =
∑

~r∈{0,1}n
(−1)|~r| sin(θ)n−|~r| cos(θ)|~r| |~r〉 〈~r| , (A7)

such that
∣∣ψ1

0

〉⊗n
= vec (D). For convenience, we denote λ = tan(θ), and rewrite D as

D = cosn(θ)
∑

~r∈{0,1}n
(−1)|~r|λn−|~r| |~r〉 〈~r| . (A8)

We also introduce an operator

F =
∑

~r∈{0,1}n
(1− α2)|~r|/2αn−|~r| |~r〉 〈~r| , (A9)

such that vec (u⊗n) = F , where u is again the pure state shared by Alice and Bob at the beginning of a single
repetition of the protocol defined in equation (1).

From our construction the unitary U that Bob applies in Lemma 4 to his portion of the entangled state u⊗n is

U = (−1)n|~0〉〈~0| − |~1〉〈~1|+
n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

(−1)n+ik~r |~r〉 〈~r| . (A10)

The state that Alice holds before measurement is then (U ⊗1Z1...n)u⊗n. We analyze how successful the application

of this channel would be to discriminate against
∣∣ψ1

0

〉⊗n
. Upon explicit computation of the formula 〈vec (D) , (U ⊗

1Z1...n
)vec (F )〉, and using repeatedly the property vec (V ) = (V ⊗ 1)vec (1), we get 〈vec (D) |vec (UF )〉 = 〈D|UF 〉,

resulting in the following expression:
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〈D|UF 〉 = Tr

(−1)nαnλn|~0〉〈~0|+ (1− α2)n/2(−1)n+1|~1〉〈~1|+
n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

(−1)nk~r(1− α2)i/2αn−iλn−i |~r〉 〈~r|



= (−1)nαn Tr

λn|~0〉〈~0| −
(√

1

α2
− 1

)n
|~1〉〈~1|+

n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

k~r

(√
1

α2
− 1

)i
λn−i |~r〉 〈~r|

 .

= (−1)nαn

λn −
(√

1

α2
− 1

)n
+

n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

k~r

(√
1

α2
− 1

)i
λn−i

 .

= (−1)nαn

(√
1

α2
− 1

)nλnα − 1 +

n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

k~rλ
n−i
α

 ,

(A11)

where λα = λ

(√
1

α2
− 1

)−1

.

Note that for the range of θ we are considering, it holds that 21/n− 1 ≤ λα ≤
1

21/n − 1
. Note as well that from our

choice of k~r, for all i we have that Im

(∑
~r∈{0,1}n
|~r|=i

k~rλ
n−i
α

)
= 0, and therefore the imaginary part of (A11) is equal

to 0. It then suffices to prove that for any choice of λa and n, there exists an s ∈ [−1, 1] such that when plugged into
the definition of k~r in the statement of 4, we have

λnα − 1 +

n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

Re (k~r)λ
n−i
α = 0. (A12)

Now, as A12 is an affine function of s with a positive linear coefficient, to prove the existence of such an s it suffices
to prove that A12 ≤ 0 when s = −1 , and A12 ≥ 0 when s = 1.

We look first into the case when s = −1. Then, when 1 ≤ λα ≤
1

21/n − 1
it holds that:

λnα − 1 +

n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

Re (k~r)λ
n−i
α = λnα − 1−

n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

(
n

n− i

)
λn−iα

= 2λnα − λnα − 1−
n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

(
n

n− i

)
λn−iα

= 2λnα − (1 + λα)n,

(A13)

which is ≤ 0 whenever λα ≤
1

21/n − 1
. When 21/n − 1 ≤ λα < 1, A12 ≤ 0 follows from two simple facts. First, the

fact that λnα < 1. Second, the fact that for each
∑
~r∈{0,1}n
|~r|=i

Re (k~r)λ
n−i
α term,

∑
~r∈{0,1}n
|~r|=i

Re (k~r) ≤ −
(
n
i

)
+ 1.

We look now into the case when s = 1. Then, when 21/n − 1 ≤ λα < 1 it holds that:
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λnα − 1 +

n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

Re (k~r)λ
n−i
α = λnα − 1 +

n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

(
n

n− i

)
λn−iα

= −2 + λnα + 1 +

n−1∑
i=1

∑
~r∈{0,1}n
|~r|=i

(
n

n− i

)
λn−iα

= −2 + (1 + λα)n,

(A14)

which is ≥ 0 whenever λα ≥ 21/n − 1. When 1 ≤ λα ≤
1

21/n − 1
, A12 ≥ 0 follows from two simple facts. First, the

fact that λnα ≥ 1. Second, the fact that for each
∑
~r∈{0,1}n
|~r|=i

Re (k~r)λ
n−i
α term,

∑
~r∈{0,1}n
|~r|=i

Re (k~r) ≥
(
n
i

)
− 1.

3. Approach for Result 5

We use an observation of Watrous [22] to reduce a question about optimality of an operator for the primal problem
to a question about feasibility of an operator for the dual problem. In particular, we use the observation that if
for a feasible solution X to equation (4) , TrY1···n(Q⊗n0 X) represents a feasible solution to (5), then X represents
an optimal solution for (4) (this is in fact an if and only if relation, but we only need one of the implications
for our purpose). This observation follows from strong duality for semidefinite programming, and the fact that
Tr
(
TrY1···n(Q⊗n0 X)

)
= Tr(Q⊗n0 X) =

〈
Q⊗n0 , X

〉
.

In our case, we have that Q0 is given by
∣∣ψ1

0

〉 〈
ψ1

0

∣∣+
∣∣ψ2

0

〉 〈
ψ2

0

∣∣+
∣∣ψ3

0

〉 〈
ψ3

0

∣∣, where the ψi0 ∈ X ⊗ Y are defined as

∣∣ψ1
0

〉
= α sin(θ) |00〉 −

√
1− α2 cos(θ) |11〉 ,∣∣ψ2

0

〉
= α sin(θ) |01〉+

√
1− α2 cos(θ) |10〉 ,∣∣ψ3

0

〉
= α cos(θ) |01〉 −

√
1− α2 sin(θ) |10〉 .

(A15)

This can be seen by considering the definition of P0 given by the states in (A15), and observing that the operator Ψρ

such that J(Ψρ) = uu∗ maps a state γ ∈ D (Z) to
(
α |0〉 〈0|+

√
1− α2 |1〉 〈1|

)
γ
(
α |0〉 〈0|+

√
1− α2 |1〉 〈1|

)
.

Similarly, for Φ1 we have that the corresponding solution to the primal problem in (4) is given by

X =
∑

~i,~j∈{0,1}n
|ii〉 〈jj | (−1)∧

~i+
⊕
~i+∧~j+

⊕
~j
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TrY1···n(Q⊗n0 X) = TrY1···n

(∣∣ψ1
0

〉 〈
ψ1

0

∣∣⊗nX)
= TrY1···n

( ∑
~i,~k∈{0,1}n

(−
√

1− α2 cos(θ))|
~i|(α sin(θ))n−|

~i|(−
√

1− α2 cos(θ))|
~k|(α sin(θ))n−|

~k| |ii〉 〈kk|

∑
~l,~j∈{0,1}n

|ll〉 〈jj | (−1)∧
~l+

⊕~l+∧~j+
⊕
~j
)

= TrY1···n

( ∑
~k∈{0,1}n

(−
√

1− α2 cos(θ))|
~k|(α sin(θ))n−|

~k|(−1)∧
~k+

⊕~k

∑
~i,~j∈{0,1}n

(−
√

1− α2 cos(θ))|
~i|(α sin(θ))n−|

~i|(−1)∧
~j+

⊕
~j |ii〉 〈jj |

)
=

∑
~k∈{0,1}n

(−
√

1− α2 cos(θ))|
~k|(α sin(θ))n−|

~k|(−1)∧
~k+

⊕~k

( ∑
~i,~j∈{0,1}n

(−
√

1− α2 cos(θ))|
~i|(α sin(θ))n−|

~i|(−1)∧
~i+

⊕
~i |i〉 〈i|

)
=

∑
~k∈{0,1}n

(
√

1− α2 cos(θ))|
~k|(α sin(θ))n−|

~k|(−1)∧
~k

( ∑
~i∈{0,1}n

(
√

1− α2 cos(θ))|
~i|(α sin(θ))n−|

~i|(−1)∧
~i |i〉 〈i|

)
.

(A16)
To verify feasibility of this operator for the dual problem, it would suffice then to check that TrY1···n(Q⊗n0 X)⊗1Y1···n

satisfies the ≤ relationship when compared to

Q⊗n0 =
(

(α sin(θ) |00〉 −
√

1− α2 cos(θ) |11〉)(α sin(θ) 〈00| −
√

1− α2 cos(θ) 〈11|) + α2 |01〉 〈01|+ (1− α2) |10〉 〈10|
)⊗n

.

(A17)
In order to do this, it might be helpful to consider the fact that we can rewrite TrY1···n(Q⊗n0 X) as

(
(
√

1− α2 cos(θ) + α sin(θ))n − 2(
√

1− α2 cos(θ))n
)
∗(

(α sin(θ) |0〉 〈0|+
√

1− α2 cos(θ) |1〉 〈1|)⊗n − 2(
√

1− α2 cos(θ) |1〉 〈1|)⊗n
)
.

(A18)
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