Extended nonlocal games and monogamy-of-entanglement games

Nathaniel Johnston ^{1,2} Rajat Mittal ³ Vincent Russo ⁴ John Watrous ^{4,5}

¹Department of Mathematics and Computer Science, Mount Allison University

²Institute for Quantum Computing and Department of Combinatorics and Optimization, University of Waterloo

³Department of Computer Science and Engineering, IIT Kanpur ⁴Institute for Quantum Computing and School of Computer Science, University of Waterloo

⁵Canadian Institute for Advanced Research, Toronto arxiv:1510.02083

Extended nonlocal games

Standard quantum strategies

Extended NPA hierarchy

An **extended nonlocal game** is a generalization of nonlocal games where the *referee also holds a quantum system*, provided to it by Alice and Bob at the start of the game.

Preparation stage: Alice and Bob supply the referee with

a quantum system.

Question stage: Referee randomly selects questions x ∈ X for Alice, y ∈ Y for Bob according to distribution π.
Answer stage: Alice responds with a ∈ A, Bob responds with b ∈ B.
Evaluation stage: Pay-off is determined by an observable V(a, b|x, y) ∈ Herm(ℂ^m) where m is the dimension of the referee's quantum system.

A standard quantum strategy consists of finitedimensional complex Hilbert spaces \mathcal{A} and \mathcal{B} as well as the following:

Shared state: $\rho \in D(\mathcal{R} \otimes \mathcal{A} \otimes \mathcal{B})$ Measurements: $\{A_a^x\} \subset Pos(\mathcal{A}), \quad \{B_b^y\} \subset Pos(\mathcal{B}).$

The expected **pay-off** for a quantum strategy is:

 $\sum_{(x,y)\in X\times Y} \pi(x,y) \sum_{(a,b)\in A\times B} \left\langle V(a,b|x,y)\otimes A_a^x\otimes B_b^y,\rho\right\rangle.$

The **quantum value** $(\omega^*(G))$, is the supremum of the pay-off over all quantum strategies for G.

Unentangled strategies

In an **unentangled strategy** Alice and Bob provide

• Not known how to calculate $\omega^*(G)$ in general.

NPA hierarchy: The NPA hierarchy is a heuristic to upper bound $\omega^*(G)$ for nonlocal games [1, 2].

Extended NPA hierarchy: We introduce the extended NPA hierarchy that places upper bounds on ω*(G) for extended nonlocal games.
ω*(G) [?] = ω_c(G) is a big open question, and the NPA

hierarchy yields increasingly better approximations on $\omega_c(G)$.

Entangled vs. unentangled strategies for monogamy games

Result: For any monogamy-of-entanglement game G where |X| = 2 it holds that $\omega(G) = \omega^*(G)$.

Monogamy-of-entanglement games

A monogamy-of-entanglement game [3] is a type of extended nonlocal game where the referee performs a measurement and accepts iff Alice's output, Bob's output, and the Referee's measurement output are the *same*.

The BB84 monogamy-of-entanglement game, G_{BB84} , is defined in the following way. Let m = 2, let $X = A = \{0, 1\}$, and define

For x = 0: $R(0|0) = |0\rangle \langle 0|$, $R(1|0) = |1\rangle \langle 1|$,

the referee with a pure state $\rho \in D(\mathcal{R})$ and Alice responds to $x \in X$ with a = f(x) and Bob responds to $y \in Y$ with b = g(y). From convexity the **unentangled value** is achieved by some deterministic strategy, and may be represented as $\omega(G) = \max_{f,g} \lambda_{\max} \left(\sum_{(x,y)\in X\times Y} \pi(x,y) V(f(x),g(y)|x,y) \right)$ where λ_{\max} is the largest eigenvalue and where the max-

imum is over all functions $f: X \to A$ and $g: Y \to B$.

Commuting measurement strategies

A commuting measurement strategy consists of a finite-dimensional complex Hilbert space \mathcal{H} as well as the following: Shared state: $\rho \in D(\mathcal{R} \otimes \mathcal{H})$ Measurements: $\{A_a^x\} \subset Pos(\mathcal{H}), \{B_b^y\} \subset Pos(\mathcal{H})$ • Class of monogamy-of-entanglement games where entanglement *does not* help the players.

Result: There exists a monogamy-of-entanglement game G where |X| = 4 where $\omega(G) < \omega^*(G)$.

• Example of monogamy-of-entanglement game where entanglement *does* help the players

Parallel repetition of monogamy games

Result: For any monogamy-of-entanglement game defined in terms of projective measurements where |X| = 2, it holds that $\omega^*(G^n) = \omega^*(G)^n$.

References

For x = 1: $R(0|1) = |+\rangle \langle +|, R(1|1) = |-\rangle \langle -|.$ Then $G_{\text{BB84}} = (\pi, R)$ where $\pi(0) = \pi(1) = 1/2.$

ω(G) = ω*(G) = cos²(π/8) [3].
Entanglement does not help Alice and Bob in G_{BB84}.

• $\omega(G^n) = \omega^*(G^n) = (\cos^2(\pi/8))^n$ [3]. • Strong parallel repetition holds for G_{BB84} . satisfying the constraints that $[A_a^x, B_b^y] = 0$, for all $x \in X, y \in Y, a \in A$, and $b \in B$.

The expected **pay-off** for a commuting measurement strategy is given by

 $\sum_{(x,y)\in X\times Y} \pi(x,y) \sum_{(a,b)\in A\times B} \left\langle V(a,b|x,y) \otimes A^x_a B^y_b, \rho \right\rangle.$

The **commuting measurement value** ($\omega_c(G)$), is the supremum of the pay-off over all commuting measurement strategies. [1] M. Navascués, S. Pironio, and A. Acín. Phys. Rev. Lett., 98:010401, 2007.

 [2] M. Navascués, S. Pironio, and A. Acín. New Journal of Physics, 10(7):073013, 2008.

 [3] M. Tomamichel, S. Fehr, J. Kaniewski, S. Wehner. New Journal of Physics, 15(10):103002, 2013.

[4] R. Cleve, P. Hoyer, B. Toner, J. Watrous. *Computational Complexity*, 2004.

[5] M. Grant, S. Boyd, Y. Ye. CVX: MATLAB software for disciplined convex programming, 2008.