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Extended nonlocal games

An extended nonlocal game is a generalization of
nonlocal games where the referee also holds a quantum
system, provided to it by Alice and Bob at the start of
the game.
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Preparation stage:Alice and Bob supply the referee with
a quantum system.

Question stage:Referee randomly selects questions
x ∈ X for Alice, y ∈ Y for Bob according to
distribution π.

Answer stage:Alice responds with a ∈ A, Bob responds
with b ∈ B.

Evaluation stage:Pay-off is determined by an
observable V (a, b|x, y) ∈ Herm(Cm) where m is
the dimension of the referee’s quantum system.

Monogamy-of-entanglement games

A monogamy-of-entanglement game [3] is a type
of extended nonlocal game where the referee performs
a measurement and accepts iff Alice’s output, Bob’s out-
put, and the Referee’s measurement output are the same.

The BB84 monogamy-of-entanglement game, GBB84, is
defined in the following way. Let m = 2, let X = A =
{0, 1}, and define
For x = 0 : R(0|0) = |0〉 〈0| , R(1|0) = |1〉 〈1| ,
For x = 1 : R(0|1) = |+〉 〈+| , R(1|1) = |−〉 〈−| .

Then GBB84 = (π,R) where π(0) = π(1) = 1/2.

•ω(G) = ω∗(G) = cos2(π/8) [3].
•Entanglement does not help Alice and Bob in GBB84.

•ω(Gn) = ω∗(Gn) = (cos2(π/8))n [3].
• Strong parallel repetition holds for GBB84.

Standard quantum strategies

A standard quantum strategy consists of finite-
dimensional complex Hilbert spaces A and B as well as
the following:

Shared state: ρ ∈ D(R⊗A⊗ B)
Measurements:{Ax

a} ⊂ Pos(A), {By
b} ⊂ Pos(B).

The expected pay-off for a quantum strategy is:
∑

(x,y)∈X×Y
π(x, y) ∑

(a,b)∈A×B

〈
V (a, b|x, y)⊗ Ax

a ⊗B
y
b , ρ

〉
.

The quantum value (ω∗(G)), is the supremum of the
pay-off over all quantum strategies for G.

Unentangled strategies

In an unentangled strategy Alice and Bob provide
the referee with a pure state ρ ∈ D(R) and Alice re-
sponds to x ∈ X with a = f (x) and Bob responds to
y ∈ Y with b = g(y).
From convexity the unentangled value is achieved by
some deterministic strategy, and may be represented as

ω(G) = max
f,g

λmax

 ∑
(x,y)∈X×Y

π(x, y)V (f (x), g(y)|x, y)


where λmax is the largest eigenvalue and where the max-
imum is over all functions f : X → A and g : Y → B.

Commuting measurement strategies

A commuting measurement strategy consists of
a finite-dimensional complex Hilbert space H as well as
the following:
Shared state: ρ ∈ D(R⊗H)
Measurements:{Ax

a} ⊂ Pos(H), {By
b} ⊂ Pos(H)

satisfying the constraints that [Ax
a, B

y
b ] = 0, for all x ∈

X , y ∈ Y , a ∈ A, and b ∈ B.

The expected pay-off for a commuting measurement
strategy is given by

∑
(x,y)∈X×Y

π(x, y) ∑
(a,b)∈A×B

〈
V (a, b|x, y)⊗ Ax

aB
y
b , ρ

〉
.

The commuting measurement value (ωc(G)), is
the supremum of the pay-off over all commuting mea-
surement strategies.

Extended NPA hierarchy

•Not known how to calculate ω∗(G) in general.

NPA hierarchy:The NPA hierarchy is a heuristic to
upper bound ω∗(G) for nonlocal games [1, 2].

Extended NPA hierarchy:We introduce the extended
NPA hierarchy that places upper bounds on
ω∗(G) for extended nonlocal games.

•ω∗(G) ?= ωc(G) is a big open question, and the NPA
hierarchy yields increasingly better approximations
on ωc(G).

Entangled vs. unentangled strategies
for monogamy games

Result:For any monogamy-of-entanglement game G
where |X| = 2 it holds that ω(G) = ω∗(G).

•Class of monogamy-of-entanglement games where
entanglement does not help the players.

Result:There exists a monogamy-of-entanglement
game G where |X| = 4 where ω(G) < ω∗(G).

•Example of monogamy-of-entanglement game
where entanglement does help the players

Parallel repetition of monogamy
games

Result:For any monogamy-of-entanglement game
defined in terms of projective measurements
where |X| = 2, it holds that ω∗(Gn) = ω∗(G)n.
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